Skip to main content
Log in

Theoretical Study of Thermal and Mass Stratification Effects on MHD Nanofluid Past an Exponentially Accelerated Vertical Plate in a Porous Medium in Presence of Heat Source, Thermal Radiation and Chemical Reaction

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This research work investigates the impacts of thermal and mass stratification on unsteady magnetohydrodynamic nanofluid moving through a vertical plate that accelerates exponentially with variable temperature in a porous medium. The governing equations of the problem are solved numerically by using the implicit Crank Nicolson method. We compare the results obtained for the nanofluid with two distinct stratifications to those obtained with no stratification. The nanofluid's velocity decreases under both types of stratification, while temperature drops under thermal stratification and concentration reduces under mass stratification. We explored a wide range of factors using graphs, including the volume fraction of nanoparticles, thermal radiation, heat source/sink, and chemical reaction. The significant findings indicate that nanofluids exhibit higher thermal conductivity compared to conventional fluids. The current study has enormous significance in several domains, such as power generation, electronic component cooling, and vehicle construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability

Data has been included within the manuscript, wherever applicable.

References

  1. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL (United States), ANL/MSD/CP-84938; CONF-951135-29, Oct. 1995. Accessed: Sep. 03, 2023. https://www.osti.gov/biblio/196525

  2. Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29(5), 1326–1336 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

    Article  Google Scholar 

  3. Das, S., Jana, R.N.: Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex. Eng. J. 54(1), 55–64 (2015). https://doi.org/10.1016/j.aej.2015.01.001

    Article  Google Scholar 

  4. Das, S., Jana, R.N., Makinde, O.D.: Transient natural convection in a vertical channel filled with nanofluids in the presence of thermal radiation. Alex. Eng. J. 55(1), 253–262 (2016). https://doi.org/10.1016/j.aej.2015.10.013

    Article  Google Scholar 

  5. Rashidi, M.M., Momoniat, E., Ferdows, M., Basiriparsa, A.: Lie group solution for free convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media. Math. Probl. Eng. 2014, e239082 (2014). https://doi.org/10.1155/2014/239082

    Article  MathSciNet  Google Scholar 

  6. Abolbashari, M.H., Freidoonimehr, N., Nazari, F., Rashidi, M.M.: Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 267, 256–267 (2014). https://doi.org/10.1016/j.powtec.2014.07.028

    Article  Google Scholar 

  7. Kameswaran, P.K., Narayana, M., Sibanda, P., Murthy, P.V.S.N.: Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int. J. Heat Mass Transf. 55(25), 7587–7595 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.065

    Article  Google Scholar 

  8. Motsumi, T.G., Makinde, O.D.: Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys. Scr. 86(4), 045003 (2012). https://doi.org/10.1088/0031-8949/86/04/045003

    Article  Google Scholar 

  9. Sheikholeslami, M., Abelman, S., Ganji, D.D.: Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int. J. Heat Mass Transf. 79, 212–222 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.004

    Article  Google Scholar 

  10. Chamkha, A.J., Aly, A.M.: Mhd free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. Chem. Eng. Commun. 198(3), 425–441 (2010). https://doi.org/10.1080/00986445.2010.520232

    Article  Google Scholar 

  11. Turkyilmazoglu, M.: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem. Eng. Sci. 84, 182–187 (2012). https://doi.org/10.1016/j.ces.2012.08.029

    Article  Google Scholar 

  12. Fotukian, S.M., Nasr Esfahany, M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass Transf. 37(2), 214–219 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003

    Article  Google Scholar 

  13. Sheikholeslami, M., Bandpy, M.G., Ellahi, R., Zeeshan, A.: Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J. Magn. Magn. Mater. 369, 69–80 (2014). https://doi.org/10.1016/j.jmmm.2014.06.017

    Article  Google Scholar 

  14. Sandeep, N., Reddy, M.G.: Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries. J. Mol. Liq. 225, 87–94 (2017). https://doi.org/10.1016/j.molliq.2016.11.026

    Article  Google Scholar 

  15. Reddy, P.C., Raju, M.C., Raju, G.S.S.: Free convective heat and mass transfer flow of heat-generating nanofluid past a vertical moving porous plate in a conducting field. Spec. Top. Amp. Porous Media Int. J. (2016). https://doi.org/10.1615/SpecialTopicsRevPorousMedia.2016016973

    Article  Google Scholar 

  16. Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R.: Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex. Eng. J. 55(1), 569–581 (2016). https://doi.org/10.1016/j.aej.2016.01.022

    Article  Google Scholar 

  17. Vemula, R., Debnath, L., Chakrala, S.: Unsteady MHD free convection flow of nanofluid past an accelerated vertical plate with variable temperature and thermal radiation. Int. J. Appl. Comput. Math. 3(2), 1271–1287 (2017). https://doi.org/10.1007/s40819-016-0176-5

    Article  MathSciNet  Google Scholar 

  18. Jeevandhar, S.P., Kedla, V., Gullapalli, N., Thavada, S.K.: Natural convective effects on MHD boundary layer nanofluid flow over an exponentially accelerating vertical plate. Biointerface Res. Appl. Chem. 11(6), 13790–13805 (2021). https://doi.org/10.33263/BRIAC116.1379013805

    Article  Google Scholar 

  19. Cheng, C.-Y.: Double-diffusive natural convection along a vertical wavy truncated cone in non-Newtonian fluid saturated porous media with thermal and mass stratification. Int. Commun. Heat Mass Transf. 35(8), 985–990 (2008). https://doi.org/10.1016/j.icheatmasstransfer.2008.04.007

    Article  Google Scholar 

  20. Cheng, C.-Y.: Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification. Int. Commun. Heat Mass Transf. 36(4), 351–356 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.01.003

    Article  Google Scholar 

  21. Paul, A., Deka, R.K.: Unsteady natural convection flow past an infinite cylinder with thermal and mass stratification. Int. J. Eng. Math. 2017, e8410691 (2017). https://doi.org/10.1155/2017/8410691

    Article  Google Scholar 

  22. Nath, R.S., Deka, R.K.: The effects of thermal stratification on flow past an infinite vertical plate in presence of chemical reaction. East Eur. J. Phys. (2023). https://doi.org/10.26565/2312-4334-2023-3-19

    Article  Google Scholar 

  23. Kalita, N., Deka, R.K., Nath, R.S.: Unsteady flow past an accelerated vertical plate with variable temperature in presence of thermal stratification and chemical reaction. East Eur. J. Phys. 3, 21 (2023). https://doi.org/10.26565/2312-4334-2023-3-49

    Article  Google Scholar 

  24. Nath, R.S., Deka, R.K., Kumar, H.: The effect of thermal stratification on unsteady parabolic flow past an infinite vertical plate with chemical reaction. East Eur. J. Phys. (2023). https://doi.org/10.26565/2312-4334-2023-4-08

    Article  Google Scholar 

  25. Kumar Rawat, S., et al.: Insight into the significance of nanoparticle aggregation and non-uniform heat source/sink on titania–ethylene glycol nanofluid flow over a wedge. Arab. J. Chem. 16(7), 104809 (2023). https://doi.org/10.1016/j.arabjc.2023.104809

    Article  Google Scholar 

  26. Yaseen, M., et al.: Inspection of unsteady buoyancy and stagnation point flow incorporated by Ag-TiO2 hybrid nanoparticles towards a spinning disk with Hall effects. Case Stud. Therm. Eng. 44, 102889 (2023). https://doi.org/10.1016/j.csite.2023.102889

    Article  Google Scholar 

  27. Singh, S.P., Kumar, M., Yaseen, M., Rawat, S.K.: Ternary hybrid nanofluid (TiO2−SiO2−MoS2/kerosene oil) flow over a rotating disk with quadratic thermal radiation and Cattaneo-Christov model. J. Cent. South Univ. 30(4), 1262–1278 (2023). https://doi.org/10.1007/s11771-023-5303-y

    Article  Google Scholar 

  28. Rawat, S.K., et al.: Designing soft computing algorithms to study heat transfer simulation of ternary hybrid nanofluid flow between parallel plates in a parabolic trough solar collector: Case of artificial neural network and particle swarm optimization. Int. Commun. Heat Mass Transf. 148, 107011 (2023). https://doi.org/10.1016/j.icheatmasstransfer.2023.107011

    Article  Google Scholar 

  29. Yaseen, M., et al.: Numerical analysis of magnetohydrodynamics in an Eyring–Powell hybrid nanofluid flow on wall jet heat and mass transfer. Nanotechnology 34(48), 485405 (2023). https://doi.org/10.1088/1361-6528/acf3f6

    Article  Google Scholar 

  30. Yaseen, M., Garia, R., Rawat, S.K., Kumar, M.: Hybrid nanofluid flow over a vertical flat plate with Marangoni convection in the presence of quadratic thermal radiation and exponential heat source. Int. J. Amb. Energy 44(1), 527–541 (2023). https://doi.org/10.1080/01430750.2022.2132287

    Article  Google Scholar 

  31. Rosseland, S.: Astrophysik: Auf Atomtheoretischer Grundlage. Springer, Berlin, Heidelberg (1931). https://doi.org/10.1007/978-3-662-26679-3

    Book  Google Scholar 

  32. Carnahan, B., Luther, H.A., Wilkes, J.O.: Applied Numerical Methods. Wiley, New York (1969)

    Google Scholar 

  33. Soundalgekar, V.M., Ganesan, P.: Finite-difference analysis of transient free convection with mass transfer on an isothermal vertical flat plate. Int. J. Eng. Sci. 19(6), 757–770 (1981). https://doi.org/10.1016/0020-7225(81)90109-9

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RS Nath developed the proposed model and the computation was done numerically, results and discussion were initiated, illustrated, and graphical figures were drawn. RKD initiated the idea of the research, supervised the research and contributed to the revision of the manuscript with grammatical and technical checking.

Corresponding author

Correspondence to Rupam Shankar Nath.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Nomenclature

\({\left(\rho {C}_{p}\right)}_{f}\)

Heat capacitance of \({{\text{H}}}_{2}\mathrm{O }({{\text{Jkg}}}^{-1}{{\text{K}}}^{-1})\)

\(Gc\)

Mass Grashof number

\({\left(\rho {C}_{p}\right)}_{nf}\)

Heat capacitance of the nanofluid \({{\text{H}}}_{2}\mathrm{O }({{\text{Jkg}}}^{-1}{{\text{K}}}^{-1})\)

\(Gr\)

Thermal Grashof number

\({\left(\rho {C}_{p}\right)}_{s}\)

Heat capacitance of nanoparticle Cu \(({{\text{Jkg}}}^{-1}{{\text{K}}}^{-1})\)

\(K\)

Non-dimensional porosity parameter

\({\left({\beta }_{C}\right)}_{nf}\)

Coefficient of expansion for species concentration of the nanofluid \(({{\text{m}}}^{2}/{\text{h}})\)

\({k}_{p}^{\mathrm{^{\prime}}}\)

Permeability of porous medium \(({{\text{m}}}^{2})\)

\({\left({\beta }_{T}\right)}_{nf}\)

Thermal expansion coefficient of the

nanofluid \(({{\text{K}}}^{-1})\)

\({k}_{1}\)

Chemical reaction parameter

\({\mu }_{f}\)

Viscosity of the \({{\text{H}}}_{2}\mathrm{O }(\mathrm{m Pa})\)

\({k}_{f}\)

Thermal conductivity of \({{\text{H}}}_{2}0\) \((\mathrm{W }{{\text{m}}}^{-1}{{\text{K}}}^{-1})\)

\({\mu }_{nf}\)

Dynamic viscosity of the nanofluid \((\mathrm{m Pa})\)

\({k}_{nf}\)

Thermal conductivity of the nanofluid \((\mathrm{W }{{\text{m}}}^{-1}{{\text{K}}}^{-1})\)

\({\rho }_{f}\)

Density of the \({{\text{H}}}_{2}\mathrm{O }({\text{kg}}/{{\text{m}}}^{3})\)

\({k}_{s}\)

Thermal conductivity of nanoparticle Cu \((\mathrm{W }{{\text{m}}}^{-1}{{\text{K}}}^{-1})\)

\({\rho }_{nf}\)

Density of the nanofluid \(({\text{kg}}/{{\text{m}}}^{3})\)

\(Kr\)

Non-Dimensional Chemical Reaction Parameter

\({\rho }_{s}\)

Density of the nanoparticle Cu \(({\text{kg}}/{{\text{m}}}^{3})\)

\(M\)

Non-Dimensional Magnetic parameter

\({\sigma }_{f}\)

Electrical conductivity of \({{\text{H}}}_{2}\mathrm{O }({\text{s}}/{\text{m}})\)

\(Pr\)

Prandtl Number

\({\sigma }_{nf}\)

Electrical conductivity of the nanofluid \(({\text{s}}/{\text{m}})\)

\(Q\)

Non-dimensional heat source/sink Parameter

\({\sigma }_{s}\)

Electrical conductivity of nanoparticle Cu \(({\text{s}}/{\text{m}})\)

\({q}_{r}^{\mathrm{^{\prime}}}\)

Radiative heat flux \((\mathrm{kW }{{\text{m}}}^{-2})\)

\(\phi \)

Volume fraction of nanoparticle Cu

\({Q}_{0}\)

Heat source/sink \(({{\text{JK}}}^{-1}{{\text{m}}}^{-3}{{\text{s}}}^{-1})\)

\(\gamma \)

Thermal stratification parameter

\(R\)

Non-dimensional radiation

\(\xi \)

Mass stratification parameter

\(S\)

Non-dimensional thermal stratification parameter

\(\tau \)

Non-dimensional skin-friction

\(Sc\)

Schimdt number

\(\theta \)

Non-dimensional temperature

\(t\)

Non-dimensional time

\(A, a, a\mathrm{^{\prime}}\)

Constant

\({t}^{\mathrm{^{\prime}}}\)

Time \(({\text{s}})\)

\({B}_{0}\)

Magnetic field strength \((\mathrm{N m}{\mathrm{ A}}^{-1})\)

\({T}^{\mathrm{^{\prime}}}\)

Temperature of the fluid \(({\text{K}})\)

\(C\)

Non-dimensional concentration

\({T}_{\infty }^{\mathrm{^{\prime}}}\)

Temperature of the fluid far away from the plate \(({\text{K}})\)

\({C}^{\mathrm{^{\prime}}}\)

Species concentration in the fluid \(({\text{mol}}/{{\text{m}}}^{3})\)

\({T}_{\omega }^{\mathrm{^{\prime}}}\)

Temperature of the plate \(({\text{K}})\)

\({C}_{\infty }^{\mathrm{^{\prime}}}\)

Concentration of the fluid far away from the plate \(({\text{mol}}/{{\text{m}}}^{3})\)

\(U\)

Non-dimensional velocity

\({C}_{\omega }^{\mathrm{^{\prime}}}\)

Concentration of the plate \(({\text{mol}}/{{\text{m}}}^{3})\)

\({u}^{\mathrm{^{\prime}}}\)

Velocity of the fluid in \(\mathrm{x{\prime}}\) direction \(({\text{m}}/{\text{s}})\)

\({D}_{nf}\)

Mass diffusion coefficient \(({\text{m}}/{\text{s}})\)

\({u}_{0}\)

Velocity of the plate \(({\text{m}}/{\text{s}})\)

\(F\)

Non-dimensional mass stratification parameter

\(y\)

Non-dimensional coordinate normal to the plate

\(g\)

Acceleration due to gravity \(({\text{m}}/{{\text{s}}}^{2})\)

\({y}^{\mathrm{^{\prime}}}\)

Coordinate normal to the plate \(({\text{m}})\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, R.S., Deka, R.K. Theoretical Study of Thermal and Mass Stratification Effects on MHD Nanofluid Past an Exponentially Accelerated Vertical Plate in a Porous Medium in Presence of Heat Source, Thermal Radiation and Chemical Reaction. Int. J. Appl. Comput. Math 10, 92 (2024). https://doi.org/10.1007/s40819-024-01721-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01721-9

Keywords

Navigation