Skip to main content
Log in

Mathematical Investigation of Reflection and Transmission of Plane Wave at the Corrugated Interface of Orthotropic Layer Sandwiched Between Two Distinct Monoclinic Media

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the reflection and transmission phenomena of plane waves scattered from corrugated interface of orthotropic layer sandwiched between two distinct monoclinic half spaces. We used Rayleigh’s method of approximation, expanding the Fourier series to the find reflection and transmission coefficients. A system of non-homogeneous equations for regular and irregular waves are solved with the aid of Cramer’s rule. The dynamics of intermediate orthotropic layer and monoclinic half-spaces are examined and the reflection and transmission coefficients, phase velocity, slowness vector and energy ratios for various reflected and transmitted waves have been derived. It has been observed that the total energy remains conserved in the entire reflection and transmission process. This study contributes valuable insights into the interactions of plane waves with layered structures, offering a comprehensive understanding of wave behavior at corrugated interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland, NewYork (1976)

    Google Scholar 

  2. Rice, O.: Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math. 4, 351–378 (1951)

    Article  MathSciNet  Google Scholar 

  3. Asano, S.: Reflection and refraction of elastic waves at a corrugated boundary surface. Part I. The case of incidence of SH-wave. Bull. Earthq. Res. Inst. 38(2), 177–197 (1960)

    Google Scholar 

  4. Asano, S.: Reflection and refraction of elastic waves at a corrugated interface. Bull. Seismol. Soc. Am. 56(1), 201–221 (1966)

    Article  Google Scholar 

  5. Abubakar, I.: Scattering of plane elastic waves at rough surfaces. I. Math. Proc. Camb. Philos. Soc. 58(1), 136–157 (1962)

    Article  MathSciNet  Google Scholar 

  6. Abubakar, I.: Reflection and refraction of plane SH waves at irregular interfaces. I. J. Phys. Earth 10(1), 1–14 (1962)

    Article  Google Scholar 

  7. Abubakar, I.: Reflection and refraction of plane SH waves at irregular interfaces. II. J. Phys. Earth 10(1), 15–20 (1962)

    Article  Google Scholar 

  8. Kuo, J.T., Nafe, J.E.: Period equation for Rayleigh waves in a layer overlying a half space with a sinusoidal interface. Bull. Seismol. Soc. Am. 52(4), 807–822 (1962)

    Article  Google Scholar 

  9. Deresiewicz, H., Wolf, B.: The effect of boundaries on wave propagation in a liquid filled porous solid: VIII. Reflection of planewaves at an irregular boundary. Bull. Seismol. Soc. Am. 54(5), 1537–1561 (1964)

    Article  Google Scholar 

  10. Levy, A., Deresiewicz, H.: Reflection and transmission of elastic waves in a system of corrugated layers. Bull. Seismol. Soc. Am. 57(3), 393–419 (1967)

    Article  Google Scholar 

  11. Gupta, S.K.: Reflections and refractions from curved interfaces: model study. Geophys. Prospect. 26(1), 82–96 (1978)

    Article  Google Scholar 

  12. Gupta, S.: Reflection and transmission of SH-waves in laterally and vertically heterogeneous media at an irregular boundary. Geophys. Trans. 33(2), 89–111 (1987)

    Google Scholar 

  13. Tomar, S.K., Saini, S.L.: Reflection and refraction of SH-waves at a corrugated interface between two-dimensional transversely isotropic half-spaces. J. Phys. Earth 45(5), 347–362 (1997)

    Article  Google Scholar 

  14. Kumar, R., Tomar, S.K., Chopra, A.: Reflection/refraction of SH-waves at a corrugated interface between two different anisotropic and vertically heterogeneous elastic solid halfspaces. Anziam J. 44(3), 447–460 (2003)

    Article  MathSciNet  Google Scholar 

  15. Tomar, S.K., Kaur, J.: Reflection and transmission of SH-waves at a corrugated interface between two laterally and vertically heterogeneous anisotropic elastic solid half-spaces. Earth Planets Space 55, 531–547 (2003)

    Article  Google Scholar 

  16. Kaur, J., Tomar, S.K.: Reflection and refraction of SH-waves at a corrugated interface between two monoclinic elastic half-spaces. Int. J. Numer. Anal. Methods Geomech. 28(15), 1543–1575 (2004)

    Article  Google Scholar 

  17. Nayfeh, A.H.: Elastic wave reflection from liquid-anisotropic substrate interfaces. Wave Motion 14(1), 55–67 (1991)

    Article  Google Scholar 

  18. Chattopadhyay, A., Choudhury, S.: The reflection phenomena of P-waves in a medium of monoclinic type. Int. J. Eng. Sci. 33(2), 195–207 (1995)

    Article  Google Scholar 

  19. Chattopadhyay, A., Saha, S.: Reflection and refraction of P waves at the interface of two monoclinic media. Int. J. Eng. Sci. 34(11), 1271–1284 (1996)

    Article  Google Scholar 

  20. Chattopadhyay, A., Saha, S., Chakraborty, M.: Reflection and transmission of shear waves in monoclinic media. Int. J. Numer. Anal. Methods Geomech. 21(7), 495-504.56 (1997)

    Article  Google Scholar 

  21. Singh, S.J.: Comments on ‘The reflection phenomena of P-waves in a medium of monoclinic type’by Chattopadhyay and Choudhury. Int. J. Eng. Sci. 37(3), 407–410 (1999)

    Article  Google Scholar 

  22. Singh, S.J., Khurana, S.: Reflection and transmission of P and SV waves at the interface between two monoclinic elastic half-spaces. Proc. Natl. Acad. Sci. 71, 305–320 (2001)

    Google Scholar 

  23. Singh, S.J., Khurana, S.: Reflection of P and SV waves at the free surface of a monoclinic elastic half-space. Proc. Indian Acad. Sci. Earth Planet. Sci. 111(4), 401–412 (2002)

    Article  Google Scholar 

  24. Singh, S.S., Tomar, S.K.: Quasi-P-waves at a corrugated interface between two dissimilar monoclinic elastic half-spaces. Int. J. Solids Struct. 44(1), 197–228 (2007)

    Article  Google Scholar 

  25. Singh, S.S., Tomar, S.K.: Shear waves at a corrugated interface between two dissimilar fiber-reinforced elastic half-spaces. J. Mech. Mater. Struct. 2(1), 167–188 (2007)

    Article  Google Scholar 

  26. Chattopadhyay, A., Gupta, S., Sharma, V.K., Kumari, P.: Reflection and refraction of plane quasi-P waves at a corrugated interface between distinct triclinic elastic half spaces. Int. J. Solids Struct. 46(17), 3241–3256 (2009)

    Article  Google Scholar 

  27. Kumar, S., Pal, P.C., Majhi, S.: Reflection and transmission of SH-waves at a corrugated interface between two semi-infinite anisotropic magnetoelastic half-spaces. Waves Random Complex Media 27(2), 339–358 (2017)

    Article  MathSciNet  Google Scholar 

  28. Singh, S.S., Lalvohbika, J.: Response of corrugated interface on incident qSV-wave in monoclinic elastic half-spaces. Int. J. Appl. Mech. Eng. 23(3), 727–750 (2018)

    Article  Google Scholar 

  29. Gupta, S., Pramanik, S., Smita, Verma, A.K.: Reflection and refraction phenomena of shear horizontal waves at the interfaces of sandwiched anisotropic magnetoelastic medium with corrugated boundaries. Eur. Phys. J. Plus 135, 1–41 (2020)

    Article  Google Scholar 

  30. Gupta, S., Das, S.K., Pramanik, S.: Reflection and transmission phenomena of SH waves in fluid saturated porous medium with corrugated interface. Mech. Adv. Mater. Struct. 29(26), 5122–5141 (2022)

    Article  Google Scholar 

  31. Kumari, P., Neha, N.: Reflection/transmission of qP (/qSV) wave through orthotropic medium between self-reinforced and orthotropic half-spaces. In: AIP Conference Proceedings, vol. 2214 (1) (2020)

  32. Kumari, P., Sharma, V.K., Modi, C.: Reflection/refraction pattern of quasi-(P/SV) waves in dissimilar monoclinic media separated with finite isotropic layer. J. Vib. Control 22(11), 2745–2758 (2016)

    Article  MathSciNet  Google Scholar 

  33. Srivastava, A., Chattopadhyay, A., Singh, P., Singh, A.K.: Two-dimensional plane wave reflection and transmission in a layered highly anisotropic media under initial stress. J. Earthq. Eng. 24(12), 1867–1885 (2020)

    Article  Google Scholar 

  34. Kumari, P.: On quasi-seismic wave propagation in highly anisotropic triclinic layer between distinct semi-infinite triclinic geomedia. Appl. Math. Model. 91, 815–836 (2021)

    Article  MathSciNet  Google Scholar 

  35. Stein, S., Wysession, M.: An Introduction to Seismology, Earthquakes, and Earth Structure. Wiley, New York (2009)

    Google Scholar 

  36. Chatterjee, M., Dhua, S., Sahu, S.A., Chattopadhyay, A.: Reflection in a highly anisotropic medium for three-dimensional plane waves under initial stresses. Int. J. Eng. Sci. 85, 136–149 (2014). https://doi.org/10.1016/j.ijengsci.2014.08.010

    Article  Google Scholar 

  37. Chatterjee, M., Dhua, S., Chattopadhyay, A., Sahu, S.A.: Reflection and refraction for three-dimensional plane waves at the interface between distinct anisotropic half-spaces under initial stresses. Int. J. Geomech. 16(4), 04015099 (2016). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000601

    Article  Google Scholar 

  38. Gu, L., Zhang, W., Ma, T., Qiu, X., Xu, J.: Numerical simulation of viscoelastic behavior of asphalt mixture using fractional constitutive model. J. Eng. Mech. 147(5), 04021027 (2021). https://doi.org/10.1061/(ASCE)EM.1943-7889.000102

    Article  Google Scholar 

  39. Dhua, S., Chatterjee, M., Chattopadhyay, A.: Reflection and transmission of three-dimensional plane wave between distinct fiber-reinforced medium under initial stress. Mech. Adv. Mater. Struct. 29(26), 5108–5121 (2022). https://doi.org/10.1080/15376494.2021.1948638

    Article  Google Scholar 

  40. Dhua, S., Nath, A., Maji, A.: Lamb-type waves in functionally graded orthotropic piezoelectric plates. In: Functionally Graded Structures: Modelling and Computation of Static and Dynamical Problems, p. 12-1 (2023)

  41. Xu, P., Yang, S.Q.: A fracture damage constitutive model for fissured rock mass and its experimental verification. Arab. J. Geosci. 10, 1–10 (2017). https://doi.org/10.1007/s12517-017-3056-3

    Article  Google Scholar 

Download references

Acknowledgements

The Second author is grateful to Guru Ghasidas Vishwavidyalaya Bilaspur, Chhattisgarh, India for approving the proposal under “Research Seed Money Grant Scheme” and is also thankful to the Department of Science and Technology, New Delhi, India for approving FIST program (Ref. No. SR/FST/MS-I/2022/122 dated 19 December 2022).

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijendra Paswan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

$$\begin{aligned} \begin{aligned} {\left\{ \begin{array}{ll} &{}\chi _{0}=i\omega \left( t-\frac{y sin \theta _{0}-z cos \theta _{0}}{c_{0}}\right) ,~~~~ \chi _{1}=i\omega \left( t-\frac{y sin \theta _{1}-z cos \theta _{1}}{c_{1}}\right) , ~~~~ \chi _{2}=i\omega \left( t-\frac{y sin \theta _{2}-z cos \theta _{2}}{c_{2}}\right) \\ &{}\chi _{3}=\left\{ i\omega \left( t-\frac{y sin \theta _{3}-z cos \theta _{3}}{c_{3}}\right) \right\} , ~~ \chi _{4}=\left\{ i\omega \left( t-\frac{y sin \theta _{4}-z cos \theta _{4}}{c_{4}}\right) \right\} ,~ \chi _{5}=\left\{ i\omega \left( t-\frac{y sin \theta _{5}+z cos \theta _{5}}{c_{5}}\right) \right\} \\ &{}\chi _{6}=\left\{ i\omega \left( t-\frac{y sin \theta _{6}+z cos \theta _{6}}{c_{6}}\right) \right\} ,~~ \chi _{7}=\left\{ i\omega \left( t-\frac{y sin \theta _{7}+z cos \theta _{7}}{c_{7}}\right) \right\} ,~ \chi _{8}=\left\{ i\omega \left( t-\frac{y sin \theta _{8}+z cos \theta _{8}}{c_{8}}\right) \right\} \\ &{}\chi _{9}=\left\{ i\omega \left( t-\frac{y sin \theta _{9}-z cos \theta _{9}}{c_{9}}\right) \right\} , \chi _{10}=\left\{ i\omega \left( t-\frac{y sin \theta _{10}-z cos \theta _{10}}{c_{10}}\right) \right\} , \chi _{11}=\left\{ i\omega \left( t-\frac{y sin \theta _{11}-z cos \theta _{11}}{c_{11}}\right) \right\} ,\\ &{}\chi _{12}=\left\{ i\omega \left( t-\frac{y sin \theta _{12}-z cos \theta _{12}}{c_{12}}\right) \right\} , ~\chi _{1n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{1n}^{\pm }-z cos \theta _{1n}^{\pm }}{c_{1}}\right) \right\} ,\\ &{}\chi _{2n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{2n}^{\pm }-z cos \theta _{2n}^{\pm }}{c_{2}}\right) \right\} , ~\chi _{3n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{3n}^{\pm }-z cos \theta _{3n}^{\pm }}{c_{3}}\right) \right\} ,\\ &{}\chi _{4n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{4n}^{\pm }-z cos \theta _{4n}^{\pm }}{c_{4}}\right) \right\} , ~\chi _{5n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{5n}^{\pm }+z cos \theta _{5n}^{\pm }}{c_{5}}\right) \right\} ,\\ &{}\chi _{6n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{6n}^{\pm }+z cos \theta _{6n}^{\pm }}{c_{6}}\right) \right\} , ~\chi _{7n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{7n}^{\pm }+z cos \theta _{7n}^{\pm }}{c_{7}}\right) \right\} ,\\ &{}\chi _{8n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{8n}^{\pm }+z cos \theta _{8n}^{\pm }}{c_{8}}\right) \right\} , ~\chi _{9n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{9n}^{\pm }-z cos \theta _{9n}^{\pm }}{c_{9}}\right) \right\} ,\\ &{}\chi _{10n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{10n}^{\pm }-z cos \theta _{10n}^{\pm }}{c_{10}}\right) \right\} , ~\chi _{11n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{11n}^{\pm }-z cos \theta _{11n}^{\pm }}{c_{11}}\right) \right\} ,\\ &{}\chi _{12n}^{\pm }=\left\{ i\omega \left( t-\frac{y sin \theta _{12n}^{\pm }-z cos \theta _{12n}^{\pm }}{c_{12}}\right) \right\} \end{array}\right. } \end{aligned} \end{aligned}$$
$$\begin{aligned} U_{0}&=\frac{M_{0}}{\rho _{1} c_{0}^{2}-L_{0}}=\frac{\rho _{1}c_{0}^{2}-N_{0}}{M_{0}}, ~~ U_{1}=\frac{M_{1}}{\rho _{1} c_{1}^{2}-L_{1}}=\frac{\rho _{1}c_{1}^{2}-N_{1}}{M_{1}}, ~~\\ U_{2}&=\frac{M_{2}}{\rho _{1} c_{2}^{2}-L_{2}}=\frac{\rho _{1}c_{2}^{2}-N_{2}}{M_{2}}, \\ U_{3}&=\frac{M_{3}}{\rho _{2} c_{3}^{2}-L_{3}}=\frac{\rho _{2}c_{3}^{2}-N_{3}}{M_{3}}, ~~ U_{4}=\frac{M_{4}}{\rho _{2} c_{4}^{2}-L_{4}}=\frac{\rho _{2}c_{4}^{2}-N_{4}}{M_{4}}, ~~\\ U_{5}&=\frac{M_{5}}{\rho _{2} c_{5}^{2}-L_{5}}=\frac{\rho _{2}c_{5}^{2}-N_{5}}{M_{5}},\\ U_{6}&=\frac{M_{6}}{\rho _{2} c_{6}^{2}-L_{6}}=\frac{\rho _{2}c_{6}^{2}-N_{6}}{M_{6}}, ~~ U_{7}=\frac{M_{7}}{\rho _{2} c_{7}^{2}-L_{7}}=\frac{\rho _{2}c_{7}^{2}-N_{7}}{M_{7}}, ~~\\ U_{8}&=\frac{M_{8}}{\rho _{2} c_{8}^{2}-L_{8}}=\frac{\rho _{2}c_{8}^{2}-N_{8}}{M_{8}}, \\ U_{9}&=\frac{M_{9}}{\rho _{3} c_{9}^{2}-L_{9}}=\frac{\rho _{3}c_{9}^{2}-N_{9}}{M_{9}},~ U_{10}=\frac{M_{10}}{\rho _{3} c_{10}^{2}-L_{10}}=\frac{\rho _{3}c_{10}^{2}-N_{10}}{M_{10}},\\ U_{11}&=\frac{M_{11}}{\rho _{3} c_{11}^{2}-L_{11}}=\frac{\rho _{3}c_{11}^{2}-N_{11}}{M_{11}},\\ U_{12}&=\frac{M_{12}}{\rho _{3} c_{12}^{2}-L_{12}}=\frac{\rho _{3}c_{12}^{2}-N_{12}}{M_{12}},~~ U^{\pm }_{1n}=\frac{M^{\pm }_{1n}}{\rho _{1} c_{1}^{2}-L^{\pm }_{1n}}=\frac{\rho _{1}c_{1}^{2}-N^{\pm }_{1n}}{M^{\pm }_{1n}},\\ U^{\pm }_{2n}&=\frac{M^{\pm }_{2n}}{\rho _{1} c_{2}^{2}-L^{\pm }_{2n}}=\frac{\rho _{1}c_{2}^{2}-N^{\pm }_{2n}}{M^{\pm }_{2n}},\\ U^{\pm }_{3n}&=\frac{M^{\pm }_{3n}}{\rho _{2} c_{3}^{2}-L^{\pm }_{3n}}=\frac{\rho _{2}c_{3}^{2}-N^{\pm }_{3n}}{M^{\pm }_{3n}},~ U^{\pm }_{4n}=\frac{M^{\pm }_{4n}}{\rho _{2} c_{4}^{2}-L^{\pm }_{4n}}=\frac{\rho _{2}c_{4}^{2}-N^{\pm }_{4n}}{M^{\pm }_{4n}},\\ U^{\pm }_{5n}&=\frac{M^{\pm }_{5n}}{\rho _{2} c_{5}^{2}-L^{\pm }_{5n}}=\frac{\rho _{2}c_{5}^{2}-N^{\pm }_{5n}}{M^{\pm }_{5n}},\\ U^{\pm }_{6n}&=\frac{M^{\pm }_{6n}}{\rho _{2} c_{6}^{2}-L^{\pm }_{6n}}=\frac{\rho _{2}c_{6}^{2}-N^{\pm }_{6n}}{M^{\pm }_{6n}},~ U^{\pm }_{7n}=\frac{M^{\pm }_{7n}}{\rho _{2} c_{7}^{2}-L^{\pm }_{7n}}=\frac{\rho _{2}c_{7}^{2}-N^{\pm }_{7n}}{M^{\pm }_{7n}},\\ U^{\pm }_{8n}&=\frac{M^{\pm }_{8n}}{\rho _{2} c_{8}^{2}-L^{\pm }_{8n}}=\frac{\rho _{2}c_{8}^{2}-N^{\pm }_{8n}}{M^{\pm }_{8n}},\\ U^{\pm }_{9n}&=\frac{M^{\pm }_{9n}}{\rho _{3} c_{9}^{2}-L^{\pm }_{9n}}=\frac{\rho _{3}c_{9}^{2}-N^{\pm }_{9n}}{M^{\pm }_{9n}},U^{\pm }_{10n}=\frac{M^{\pm }_{10n}}{\rho _{3} c_{10}^{2}-L^{\pm }_{10n}}=\frac{\rho _{3}c_{10}^{2}-N^{\pm }_{10n}}{M^{\pm }_{10n}},\\ U^{\pm }_{11n}&=\frac{M^{\pm }_{11n}}{\rho _{3} c_{11}^{2}-L^{\pm }_{11n}}=\frac{\rho _{3}c_{11}^{2}-N^{\pm }_{11n}}{M^{\pm }_{11n}},\\ U^{\pm }_{12n}&=\frac{M^{\pm }_{12n}}{\rho _{3}c_{12}^{2}-L^{\pm }_{12n}}=\frac{\rho _{3}c_{12}^{2}-N^{\pm }_{12n}}{M^{\pm }_{12n}} \\ \end{aligned}$$
$$\begin{aligned} L_{0}&=C_{22}sin^{2}\theta _{0}+C_{44}cos^{2}\theta _{0}-2C_{24}sin \theta _{0}cos\theta _{0},~~~\\ M_{0}&=C_{24}sin^{2}\theta _{0}+C_{44}cos^{2}\theta _{0}-(C_{23}+C_{44})sin \theta _{0}cos\theta _{0},\\ N_{0}&=C_{44}sin^{2}\theta _{0}+C_{33}cos^{2}\theta _{0}-2C_{34}sin \theta _{0}cos\theta _{0},~~\\ M_{1}&=C_{24}sin^{2}\theta _{1}+C_{44}cos^{2}\theta _{1}-(C_{23}+C_{44})sin \theta _{1}cos\theta _{1},\\ L_{1}&=C_{22}sin^{2}\theta _{1}+C_{44}cos^{2}\theta _{1}-2C_{24}sin \theta _{1}cos\theta _{1},~~~~\\ N_{1}&=C_{44}sin^{2}\theta _{1}+C_{33}cos^{2}\theta _{1}-2C_{34}sin \theta _{1}cos\theta _{1}, \\ L_{2}&=C_{22}sin^{2}\theta _{2}+C_{44}cos^{2}\theta _{2}-2C_{24}sin \theta _{2}cos\theta _{2},~~~~\\ M_{2}&=C_{24}sin^{2}\theta _{2}+C_{44}cos^{2}\theta _{2}-(C_{23}+C_{44})sin \theta _{2}cos\theta _{2},\\ N_{2}&=C_{44}sin^{2}\theta _{2}+C_{33}cos^{2}\theta _{2}-2C_{34}sin \theta _{2}cos\theta _{2},~~ L_{3}=C_{24}sin^{2}\theta _{3}+C_{44}cos^{2}\theta _{3},\\ M_{3}&=(C_{23}+C_{44})sin \theta _{3}cos\theta _{3},~ N_{3}=C_{44}sin^{2}\theta _{3}+C_{33}cos^{2}\theta _{3}-2C_{34}sin \theta _{3}cos\theta _{3},\\ L_{4}&=C_{24}sin^{2}\theta _{4}+C_{44}cos^{2}\theta _{4},~ M_{4}=(C_{23}+C_{44})sin \theta _{4}cos\theta _{4},\\ N_{4}&=C_{44}sin^{2}\theta _{4}+C_{33}cos^{2}\theta _{4}-2C_{34}sin \theta _{4}cos\theta _{4},\\ L_{5}&=C_{24}sin^{2}\theta _{5}+C_{44}cos^{2}\theta _{5}, M_{5}=(C_{23}+C_{44})sin \theta _{5}cos\theta _{5},\\ N_{5}&=C_{44}sin^{2}\theta _{5}+C_{33}cos^{2}\theta _{5}-2C_{34}sin \theta _{5}cos\theta _{5},\\ L_{6}&=C_{24}sin^{2}\theta _{6}+C_{44}cos^{2}\theta _{6},~ M_{6}=(C_{23}+C_{44})sin \theta _{6}cos\theta _{6}, ~\\ N_{6}&=C_{44}sin^{2}\theta _{6}+C_{33}cos^{2}\theta _{6}-2C_{34}sin \theta _{6}cos\theta _{6},\\ L_{7}&=C_{24}sin^{2}\theta _{7}+C_{44}cos^{2}\theta _{7},~ M_{7}=(C_{23}+C_{44})sin \theta _{7}cos\theta _{7},\\ N_{7}&=C_{44}sin^{2}\theta _{7}+C_{33}cos^{2}\theta _{7}-2C_{34}sin \theta _{7}cos\theta _{7},\\ L_{8}&=C_{24}sin^{2}\theta _{8}+C_{44}cos^{2}\theta _{8},~M_{8}=(C_{23}+C_{44})sin \theta _{8}cos\theta _{8},\\ N_{8}&=C_{44}sin^{2}\theta _{8}+C_{33}cos^{2}\theta _{8}-2C_{34}sin \theta _{8}cos\theta _{8}, \\ L_{9}&=C_{22}sin^{2}\theta _{9}+C_{44}cos^{2}\theta _{9}-2C_{24}sin \theta _{9}cos\theta _{9},~\\ M_{9}&=C_{24}sin^{2}\theta _{9}+C_{44}cos^{2}\theta _{9}-(C_{23}+C_{44})sin \theta _{9}cos\theta _{9},\\ N_{9}&=C_{44}sin^{2}\theta _{0}+C_{33}cos^{2}\theta _{9}-2C_{34}sin \theta _{9}cos\theta _{9},~~\\ L_{10}&=C_{22}sin^{2}\theta _{10}+C_{44}cos^{2}\theta _{10}-2C_{24}sin \theta _{10}cos\theta _{10},\\ M_{10}&=C_{24}sin^{2}\theta _{10}+C_{44}cos^{2}\theta _{10}-(C_{23}+C_{44})sin \theta _{10}cos\theta _{10},\\ N_{10}&=C_{44}sin^{2}\theta _{10}+C_{33}cos^{2}\theta _{10}-2C_{34}sin \theta _{10}cos\theta _{10},\\ L_{11}&=C_{22}sin^{2}\theta _{11}+C_{44}cos^{2}\theta _{11}-2C_{24}sin \theta _{11}cos\theta _{11},\\ M_{11}&=C_{24}sin^{2}\theta _{11}+C_{44}cos^{2}\theta _{11}-(C_{23}+C_{44})sin \theta _{11}cos\theta _{11},\\ N_{11}&=C_{44}sin^{2}\theta _{11}+C_{33}cos^{2}\theta _{11}-2C_{34}sin \theta _{11}cos\theta _{11},\\ \end{aligned}$$
$$\begin{aligned} M_{12}&=C_{24}sin^{2}\theta _{12}+C_{44}cos^{2}\theta _{12}-(C_{23}+C_{44})sin \theta _{12}cos\theta _{12},\\ L^{\pm }_{1n}&=C_{22}sin^{2}\theta ^{\pm }_{1n}+C_{44}cos^{2}\theta ^{\pm }_{1n} -2C_{24}sin\theta ^{\pm }_{1n}cos\theta ^{\pm }_{1n},~\\ N^{\pm }_{1n}&=C_{44}sin^{2}\theta ^{\pm }_{1n}+C_{33}cos^{2}\theta ^{\pm }_{1n}-2C_{34}sin \theta ^{\pm }_{1n}cos\theta ^{\pm }_{1n},\\ M^{\pm }_{1n}&=C_{24}sin^{2}\theta ^{\pm }_{1n}+C_{44}cos^{2}\theta ^{\pm }_{1n}-(C_{23}+C_{44})sin \theta ^{\pm }_{1n}cos\theta ^{\pm }_{1n},\\ L^{\pm }_{2n}&=C_{22}sin^{2}\theta ^{\pm }_{2n}+C_{44}cos^{2}\theta ^{\pm }_{2n} -2C_{24}sin\theta ^{\pm }_{2n}cos\theta ^{\pm }_{2n},\\ N^{\pm }_{2n}&=C_{44}sin^{2}\theta ^{\pm }_{2n}+C_{33}cos^{2}\theta ^{\pm }_{2n}-2C_{34}sin \theta ^{\pm }_{2n}cos\theta ^{\pm }_{2n},\\ M^{\pm }_{2n}&=C_{24}sin^{2}\theta ^{\pm }_{2n}+C_{44}cos^{2}\theta ^{\pm }_{2n}-(C_{23}+C_{44})sin\theta ^{\pm }_{2n}cos\theta ^{\pm }_{2n},\\ L^{\pm }_{3n}&=C_{24}sin^{2}\theta ^{\pm }_{3n}+C_{44}cos^{2}\theta ^{\pm }_{3n},~\\ M^{\pm }_{3n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{3n}+C_{44}cos^{2}\theta ^{\pm }_{3n}-(C_{23}+C_{44})sin\theta ^{\pm }_{3n}cos\theta ^{\pm }_{3n},\\ N^{\pm }_{3n}&=C_{44}sin^{2}\theta ^{\pm }_{3n}+C_{33}cos^{2}\theta ^{\pm }_{3n}-2C_{34}sin \theta ^{\pm }_{3n}cos\theta ^{\pm }_{3n},\\ L^{\pm }_{4n}&=C_{24}sin^{2}\theta ^{\pm }_{4n}+C_{44}cos^{2}\theta ^{\pm }_{4n},\\ M^{\pm }_{4n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{4n}+C_{44}cos^{2}\theta ^{\pm }_{4n}-(C_{23}+C_{44})sin\theta ^{\pm }_{4n}cos\theta ^{\pm }_{4n},\\ N^{\pm }_{4n}&=C_{44}sin^{2}\theta ^{\pm }_{4n}+C_{33}cos^{2}\theta ^{\pm }_{4n}-2C_{34}sin \theta ^{\pm }_{4n}cos\theta ^{\pm }_{4n}, \\ L^{\pm }_{5n}&=C_{24}sin^{2}\theta ^{\pm }_{5n}+C_{44}cos^{2}\theta ^{\pm }_{5n},~\\ M^{\pm }_{5n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{5n}+C_{44}cos^{2}\theta ^{\pm }_{5n}-(C_{23}+C_{44})sin\theta ^{\pm }_{5n}cos\theta ^{\pm }_{5n},\\ N^{\pm }_{5n}&=C_{44}sin^{2}\theta ^{\pm }_{5n}+C_{33}cos^{2}\theta ^{\pm }_{5n}-2C_{34}sin \theta ^{\pm }_{5n}cos\theta ^{\pm }_{5n},\\ L^{\pm }_{6n}&=C_{24}sin^{2}\theta ^{\pm }_{6n}+C_{44}cos^{2}\theta ^{\pm }_{6n},\\ M^{\pm }_{6n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{6n}+C_{44}cos^{2}\theta ^{\pm }_{6n}-(C_{23}+C_{44})sin\theta ^{\pm }_{6n}cos\theta ^{\pm }_{6n},\\ N^{\pm }_{6n}&=C_{44}sin^{2}\theta ^{\pm }_{6n}+C_{33}cos^{2}\theta ^{\pm }_{6n}-2C_{34}sin \theta ^{\pm }_{6n}cos\theta ^{\pm }_{6n},\\ L^{\pm }_{7n}&=C_{24}sin^{2}\theta ^{\pm }_{7n}+C_{44}cos^{2}\theta ^{\pm }_{7n},~\\ M^{\pm }_{7n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{7n}+C_{44}cos^{2}\theta ^{\pm }_{7n}-(C_{23}+C_{44})sin\theta ^{\pm }_{7n}cos\theta ^{\pm }_{7n},\\ N^{\pm }_{3n}&=C_{44}sin^{2}\theta ^{\pm }_{7n}+C_{33}cos^{2}\theta ^{\pm }_{7n}-2C_{34}sin \theta ^{\pm }_{7n}cos\theta ^{\pm }_{7n},\\ L^{\pm }_{8n}&=C_{24}sin^{2}\theta ^{\pm }_{8n}+C_{44}cos^{2}\theta ^{\pm }_{8n},\\ M^{\pm }_{8n}&=(C_{23}+C_{44})sin^{2}\theta ^{\pm }_{8n}+C_{44}cos^{2}\theta ^{\pm }_{8n}-(C_{23}+C_{44})sin\theta ^{\pm }_{8n}cos\theta ^{\pm }_{8n},\\ N^{\pm }_{8n}&=C_{44}sin^{2}\theta ^{\pm }_{8n}+C_{33}cos^{2}\theta ^{\pm }_{8n}-2C_{34}sin \theta ^{\pm }_{8n}cos\theta ^{\pm }_{8n},\\ L^{\pm }_{9n}&=C_{22}sin^{2}\theta ^{\pm }_{9n}+C_{44}cos^{2}\theta ^{\pm }_{9n}-2C_{24}sin\theta ^{\pm }_{9n}cos\theta ^{\pm }_{9n},~\\ N^{\pm }_{9n}&=C_{44}sin^{2}\theta ^{\pm }_{9n}+C_{33}cos^{2}\theta ^{\pm }_{9n}-2C_{34}sin \theta ^{\pm }_{9n}cos\theta ^{\pm }_{9n}, \\ \end{aligned}$$
$$\begin{aligned} M^{\pm }_{9n}&=C_{24}sin^{2}\theta ^{\pm }_{9n}+C_{44}cos^{2}\theta ^{\pm }_{9n}-(C_{23}+C_{44})sin \theta ^{\pm }_{9n}cos\theta ^{\pm }_{9n},\\ L^{\pm }_{10n}&=C_{22}sin^{2}\theta ^{\pm }_{10n}+C_{44}cos^{2}\theta ^{\pm }_{10n}-2C_{24}sin \theta ^{\pm }_{10n}cos\theta ^{\pm }_{10n},\\ N^{\pm }_{10n}&=C_{44}sin^{2}\theta ^{\pm }_{10n}+C_{33}cos^{2}\theta ^{\pm }_{10n}-2C_{34}sin \theta ^{\pm }_{10n}cos\theta ^{\pm }_{10n},\\ M^{\pm }_{10n}&=C_{24}sin^{2}\theta ^{\pm }_{10n}+C_{44}cos^{2}\theta ^{\pm }_{10n}-(C_{23}+C_{44})sin \theta ^{\pm }_{10n}cos\theta ^{\pm }_{10n},\\ L^{\pm }_{11n}&=C_{22}sin^{2}\theta ^{\pm }_{11n}+C_{44}cos^{2}\theta ^{\pm }_{11n}-2C_{24}sin \theta ^{\pm }_{11n}cos\theta ^{\pm }_{11n},\\ N^{\pm }_{11n}&=C_{44}sin^{2}\theta ^{\pm }_{11n}+C_{33}cos^{2}\theta ^{\pm }_{11n}-2C_{34}sin \theta ^{\pm }_{11n}cos\theta ^{\pm }_{11n},\\ M^{\pm }_{11n}&=C_{24}sin^{2}\theta ^{\pm }_{11n}+C_{44}cos^{2}\theta ^{\pm }_{11n}-(C_{23}+C_{44})sin \theta ^{\pm }_{11n}cos\theta ^{\pm }_{11n},\\ L^{\pm }_{12n}&=C_{22}sin^{2}\theta ^{\pm }_{12n}+C_{44}cos^{2}\theta ^{\pm }_{12n}-2C_{24}sin \theta ^{\pm }_{12n}cos\theta ^{\pm }_{12n},\\ N^{\pm }_{12n}&=C_{44}sin^{2}\theta ^{\pm }_{12n}+C_{33}cos^{2}\theta ^{\pm }_{12n}-2C_{34}sin \theta ^{\pm }_{12n}cos\theta ^{\pm }_{12n},\\ M^{\pm }_{12n}&=C_{24}sin^{2}\theta ^{\pm }_{12n}+C_{44}cos^{2}\theta ^{\pm }_{12n}-(C_{23}+C_{44})sin \theta ^{\pm }_{12n}cos\theta ^{\pm }_{12n}, \end{aligned}$$

Appendix II

$$\begin{aligned} l_{0}&=(U_{0}c_{24}+c_{44})P_{0}-(U_{0}c_{44}+c_{34})R_{0},~~~l_{1}=(U_{1}c_{24}+c_{44})P_{0}+(U_{1}c_{44}+c_{34})R_{1},\\ l_{2}&=(U_{2}c_{24}+c_{44})P_{0}+(U_{2}c_{44}+c_{34})R_{2},~~~l_{3}=c_{44}P_{0}-U_{3}c_{44}R_{3},\\ l_{4}&=c_{44}P_{0}-U_{4}c_{44}R_{4},~~~m_{0}=(U_{0}c_{23}+c_{34})P_{0}-(U_{0}c_{34}+c_{33})R_{0},\\ m_{1}&=(U_{1}c_{23}+c_{34})P_{0}+(U_{1}c_{34}+c_{33})R_{1},~~~m_{2}=(U_{2}c_{23}+c_{34})P_{0}+(U_{2}c_{34}+c_{33})R_{2},\\ m_{3}&=U_{3}c_{23}P_{0}-c_{33}R_{3},~~~m_{4}=U_{4}c_{23}P_{0}-c_{33}R_{4}\\ f^{\mp }_{1}&=i\zeta _{{\mp }_{n}}\left[ -R_{0}U_{0}+R_{1}U_{1}\frac{A_{3}}{B_{0}}+R_{2}U_{2}\frac{B_{3}}{B_{0}}+R_{3}U_{3}\frac{C_{3}}{B_{0}}+R_{4}U_{4}\frac{D_{3}}{B_{0}}\right] ,\\ f^{\mp }_{2}&=i\zeta _{{\mp }_{n}}\left[ -R_{0}+R_{1}\frac{A_{3}}{B_{0}}+R_{2}\frac{B_{3}}{B_{0}}+R_{3}\frac{C_{3}}{B_{0}}+R_{4}\frac{D_{3}}{B_{0}}\right] ,\\ f^{\mp }_{3}&=i\left[ g^{\mp }_{0}+g^{\mp }_{1}\frac{A_{3}}{B_{0}}+g^{\mp }_{2}\frac{B_{3}}{B_{0}}-g^{\mp }_{3}\frac{C_{3}}{B_{0}}-g^{\mp }_{4}\frac{D_{3}}{B_{0}}\right] ,\\ f^{\mp }_{4}&=i\left[ h^{\mp }_{0}+h^{\mp }_{1}\frac{A_{3}}{B_{0}}+h^{\mp }_{2}\frac{B_{3}}{B_{0}}-h^{\mp }_{3}\frac{C_{3}}{B_{0}}-h^{\mp }_{4}\frac{D_{3}}{B_{0}}\right] ,\\ g^{\mp }_{0}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{0}\pm (c_{34}-c_{24})npR_{0}-c_{44}R_{0}^{2}\}U_{0}\pm (c_{33}-c_{23})npR_{0}\\&\quad -c_{34}R_{0}^{2}\mp (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{0}]\zeta _{{\mp }_{n}},\\ g^{\mp }_{1}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{1}\pm (c_{34}-c_{24})npR_{1}-c_{44}R_{1}^{2}\}U_{1}\pm (c_{33}-c_{23})npR_{1}\\&\quad -c_{34}R_{1}^{2}\mp (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{1}]\zeta _{{\mp }_{n}},\\ g^{\mp }_{2}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{2}\pm (c_{34}-c_{24})npR_{2}-c_{44}R_{2}^{2}\}U_{2}\pm (c_{33}-c_{23})npR_{2}\\&\quad -c_{34}R_{2}^{2}\mp (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{2}]\zeta _{{\mp }_{n}},\\ g^{\mp }_{3}&=[\{\mp (c_{23}-c_{22})npP_{0}-c_{24}R_{3}\}U_{3}\pm (c_{33}-c_{23})npR_{3}-c_{44}P_{0}]\zeta _{{\mp }_{n}},\\ g^{\mp }_{4}&=[\{\mp (c_{23}-c_{22})npP_{0}-c_{24}R_{4}\}U_{4}\pm (c_{33}-c_{23})npR_{4}-c_{44}P_{0}]\zeta _{{\mp }_{n}},\\ g^{\mp }_{5}&=-[\{c_{44}R^{\pm }_{1n} \mp +c_{24}(P_{0}\pm np)\}U^{\pm }_{1n}+c_{34}R^{\pm }_{1n}+c_{44}(P_{0}\pm np)],\\ g^{\mp }_{6}&=-[\{c_{44}R^{\pm }_{2n} \mp +c_{24}(P_{0}\pm np)\}U^{\pm }_{2n}+c_{34}R^{\pm }_{2n}+c_{44}(P_{0}\pm np)],\\ g^{\mp }_{7}&=[\{c_{44}R^{\pm }_{3n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{3n}+(c_{33}-c_{23})npR^{\pm }_{3n}-c_{44}(P_{0}\pm np)],\\ g^{\mp }_{8}&=[\{c_{44}R^{\pm }_{4n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{4n}+(c_{33}-c_{23})npR^{\pm }_{4n}-c_{44}(P_{0}\pm np)],\\ h^{\mp }_{0}&=[\{c_{23}P_{0}R_{0}\pm 2c_{24}npP_{0}-c_{34}R_{0}^{2}-2c_{44}npR_{0}\}U_{0}\\&\quad -c_{33}R_{0}^{2}\mp 2c_{34}npR_{0}-c_{34}P_{0}R_{0}\pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}},\\ h^{\mp }_{1}&=[\{c_{23}P_{0}R_{1}\pm 2c_{24}npP_{0}-c_{34}R_{1}^{2}-2c_{44}npR_{1}\}U_{1}\\&\quad -c_{33}R_{1}^{2}\mp 2c_{34}npR_{1}-c_{34}P_{0}R_{1}\pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}},\\ h^{\mp }_{2}&=[\{c_{23}P_{0}R_{2}\pm 2c_{24}npP_{0}-c_{34}R_{2}^{2}-2c_{44}npR_{2}\}U_{2}\\&\quad -c_{33}R_{2}^{2}\mp 2c_{34}npR_{2}-c_{34}P_{0}R_{2}\pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}},\\ \end{aligned}$$
$$\begin{aligned} h^{\mp }_{3}&=[\{c_{23}P_{0}- 2c_{44}npR_{3}\}U_{3}+c_{33}R_{3}- 2c_{44}npP_{0}]\zeta _{{\mp }_{n}},\\ h^{\mp }_{4}&=[\{c_{23}P_{0}- 2c_{44}npR_{4}\}U_{4}+c_{33}R_{4}- 2c_{44}npP_{0}]\zeta _{{\mp }_{n}},\\ h^{\mp }_{5}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{1n}\}U^{\pm }_{1n}+c_{33}R^{\pm }_{1n}-c_{34}(P_{0}\pm np)],\\ h^{\mp }_{6}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{2n}\}U^{\pm }_{2n}+c_{33}R^{\pm }_{2n}-c_{34}(P_{0}\pm np)],\\ h^{\mp }_{7}&=[\{c_{23}(P_{0}\pm np)-2c_{44}npR^{\pm }_{3n}\}U^{\pm }_{3n}+c_{33}R^{\pm }_{3n}-2c_{44}np(P_{0}\pm np)],\\ h^{\mp }_{8}&=[\{c_{23}(P_{0}\pm np)-2c_{44}npR^{\pm }_{4n}\}U^{\pm }_{4n}+c_{33}R^{\pm }_{4n}-2c_{44}np(P_{0}\pm np)]\\ l_{5}&=\{c_{44}P_{0}-U_{5}c_{44}R_{5} \}e^{i(R_{5}+R_{3})H},~~~l_{6}=\{c_{44}P_{0}+U_{6}c_{44}R_{6}\}e^{i(R_{6}+R_{3})H},\\ l_{9}&=\{(U_{9}c_{24}+c_{44})P_{0}-(U_{9}c_{44}+c_{34})R_{9} \}e^{i(-R_{9}+R_{3})H}, ~~m_{5}=\{U_{5}c_{23}P_{0}-c_{33}R_{5} \}e^{i(R_{5}+R_{3})H}, \\ l_{10}&=\{(U_{10}c_{24}+c_{44})P_{0}-(U_{10}c_{44}+c_{34})R_{10}\}e^{i(-R_{10}+R_{3})H},~~m_{6}=\{U_{6}c_{23}P_{0}-c_{33}R_{6}\}e^{i(R_{6}+R_{3})H},\\ m_{9}&=\{(U_{9}c_{24}+c_{44})P_{0}-(U_{9}c_{44}+c_{34})R_{9} \}e^{i(-R_{9}+R_{3})H},\\ m_{10}&=\{(U_{10}c_{24}+c_{44})P_{0}-(U_{10}c_{44}+c_{34})R_{10}\}e^{i(-R_{10}+R_{3})H} \\ f^{\mp }_{5}&=i\zeta _{{\mp }_{n}}\left[ -R_{3}U_{3}+R_{5}U_{5}\frac{E_{3}}{C_{3}}e^{i(R_{5}+R_{3})H}+R_{6}U_{6}\frac{F_{3}}{C_{3}}e^{i(R_{6}+R_{3})H}+R_{9}U_{9}\frac{G_{3}}{C_{3}}e^{i(-R_{9}+R_{3})H}\right. \\&\quad \left. +R_{10}U_{10}\frac{H_{3}}{C_{3}}e^{i(-R_{10}+R_{3})H}\right] ,\\ f^{\mp }_{6}&=i\zeta _{{\mp }_{n}}\left[ -R_{3}+R_{5}\frac{E_{3}}{C_{3}}e^{i(R_{5}+R_{3})H} +R_{6}\frac{F_{3}}{C_{3}}e^{i(R_{6}+R_{3})H}+R_{9}\frac{G_{3}}{C_{3}}e^{i(-R_{9}+R_{3})H}\right. \\&\quad \left. +R_{10}\frac{H_{3}}{C_{3}}e^{i(-R_{10}+R_{3})H}\right] ,\\ f^{\mp }_{7}&=i\left[ g^{\mp }_{9}+g^{\mp }_{10}\frac{E_{3}}{C_{3}}+g^{\mp }_{11}\frac{F_{3}}{C_{3}} -g^{\mp }_{12}\frac{G_{3}}{C_{3}}-g^{\mp }_{13}\frac{H_{3}}{C_{3}}\right] ,\\ f^{\mp }_{8}&=i\left[ h^{\mp }_{9}+h^{\mp }_{10}\frac{E_{3}}{C_{3}}+h^{\mp }_{11}\frac{F_{3}}{C_{3}} -h^{\mp }_{12}\frac{G_{3}}{C_{3}}-h^{\mp }_{13}\frac{H_{3}}{C_{3}}\right] \end{aligned}$$
$$\begin{aligned} g^{\mp }_{9}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{3}\}U_{3}\pm (c_{23}-c_{22})npR_{3}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{-iR_{3}H},\\ g^{\mp }_{10}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{5}\}U_{5}\pm (c_{23}-c_{22})npR_{5}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{iR_{5}H},\\ g^{\mp }_{11}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{6}\}U_{6}\pm (c_{23}-c_{22})npR_{6}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{iR_{6}H},\\ g^{\mp }_{12}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{9}\}U_{9}\pm (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{9}\\&\quad \mp (c_{33}-c_{23})npR_{9}+c_{34}R_{9}^{2} ]\zeta _{{\mp }_{n}}e^{-R_{9}H},\\ g^{\mp }_{13}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{10}\}U_{10}\pm (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{10}\\&\quad \mp (c_{33}-c_{23})npR_{10}+c_{34}R_{10}^{2} ]\zeta _{{\mp }_{n}}e^{-R_{10}H},\\ g^{\mp }_{14}&=[\{c_{44}R^{\pm }_{5n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{5n}+(c_{33}-c_{23})npR^{\pm }_{5n}-c_{44}(P_{0}\pm np)]e^{R^{\pm }_{5n}H},\\ g^{\mp }_{15}&=[\{c_{44}R^{\pm }_{6n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{6n}+(c_{33}-c_{23})npR^{\pm }_{6n}-c_{44}(P_{0}\pm np)]e^{R^{\pm }_{6n}H},\\ g^{\mp }_{16}&=[\{c_{44}R^{\pm }_{9n}+c_{24}(P_{0}\pm np)\}U^{\pm }_{9n}+c_{34}R^{\pm }_{9n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{9n}H},\\ g^{\mp }_{17}&=[\{c_{44}R^{\pm }_{10n}+c_{24}(P_{0}\pm np)\}U^{\pm }_{10n}+c_{34}R^{\pm }_{10n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{10n}H},\\ h^{\mp }_{9}&=[\{c_{23}P_{0}-2c_{44}npR_{3}\}U_{3}+c_{33}R_{3}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{-iR_{3}H},\\ h^{\mp }_{10}&=[\{c_{23}P_{0}-2c_{44}npR_{5}\}U_{5}+c_{33}R_{5}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{iR_{5}H},\\ h^{\mp }_{11}&=[\{c_{23}P_{0}-2c_{44}npR_{6}\}U_{6}+c_{33}R_{6}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{iR_{6}H},\\ h^{\mp }_{12}&=[\{c_{23}P_{0}R_{9}-2c_{24}npP_{0}-c_{34}R_{9}^{2}-2c_{44}npR_{9}\}U_{9}-c_{33}R_{9}^{2}\mp 2c_{34}npR_{9}-c_{34}P_{0}R_{9}\\&\quad \pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{-R_{9}H},\\ h^{\mp }_{13}&=[\{c_{23}P_{0}R_{9}\pm 2c_{24}npP_{0}-c_{34}R_{10}^{2}-2c_{44}npR_{10}\}U_{10}-c_{33}R_{10}^{2}\mp 2c_{34}npR_{10}-c_{34}P_{0}R_{10}\\&\quad \pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{-R_{10}H},\\ h^{\mp }_{14}&=[\{c_{23}(P_{0}\pm np)-2c_{44}R^{\pm }_{5n}\}U^{\pm }_{5n}+c_{33}R^{\pm }_{5n}-2c_{44}(P_{0}\pm np)]e^{R^{\pm }_{5n}H},\\ h^{\mp }_{15}&=[\{c_{23}(P_{0}\pm np)-2c_{44}R^{\pm }_{6n}\}U^{\pm }_{6n}+c_{33}R^{\pm }_{6n}-2c_{44}(P_{0}\pm np)]e^{R^{\pm }_{6n}H},\\ h^{\mp }_{16}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{9n}\}U^{\pm }_{9n}+c_{33}R^{\pm }_{9n}-c_{34}(P_{0}\pm np)]e^{-R^{\pm }_{9n}H},\\ h^{\mp }_{17}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{10n}\}U^{\pm }_{10n}+c_{33}R^{\pm }_{10n}-c_{34}(P_{0}\pm np)]e^{-R^{\pm }_{10n}H}\\ l_{7}&=\{c_{44}P_{0}+U_{7}c_{44}R_{7}\}e^{i(R_{7}+R_{4})H},~~l_{8}=\{c_{44}P_{0}+U_{8}c_{44}R_{8}\}e^{i(R_{8}+R_{4})H},\\ l_{11}&=\{(U_{11}c_{24}+c_{44})P_{0}-(U_{11}c_{44}+c_{34})R_{11}\}e^{i(-R_{11}+R_{4})H},\\ l_{12}&=\{(U_{12}c_{24}+c_{44})P_{0}-(U_{12}c_{44}+c_{34})R_{12} \}e^{i(-R_{12}+R_{4})H},\\ m_{7}&=\{U_{7}c_{23}P_{0}-c_{33}R_{7} \}e^{i(R_{7}+R_{4})H},~~~m_{8}=\{U_{8}c_{23}P_{0}-c_{33}R_{8}\}e^{i(R_{8}+R_{4})H},\\ m_{11}&=\{(U_{11}c_{24}+c_{44})P_{0}-(U_{11}c_{44}+c_{34})R_{11} \}e^{i(-R_{11}+R_{4})H},\\ m_{12}&=\{(U_{12}c_{24}+c_{44})P_{0}-(U_{12}c_{44}+c_{34})R_{12}\}e^{i(-R_{12}+R_{4})H} \\ \end{aligned}$$
$$\begin{aligned} f^{\mp }_{9}&=i\zeta _{{\mp }_{n}}\left[ -R_{4}U_{4}+R_{7}U_{7}\frac{I_{3}}{D_{3}}e^{i(R_{7}+R_{4})H}+R_{8}U_{8}\frac{J_{3}}{D_{3}}e^{i(R_{8}+R_{4})H}+R_{11}U_{11}\frac{K_{3}}{D_{3}}e^{i(-R_{11}+R_{4})H}\right. \\&\quad \left. +R_{12}U_{12}\frac{S_{3}}{D_{3}}e^{i(-R_{12}+R_{4})H}\right] ,\\ f^{\mp }_{10}&=i\zeta _{{\mp }_{n}} \left[ -R_{4}+R_{7}\frac{I_{3}}{D_{3}}e^{i(R_{7}+R_{4})H}+R_{8}\frac{J_{3}}{D_{3}}e^{i(R_{8} +R_{4})H}+R_{11}\frac{K_{3}}{D_{3}}e^{i(-R_{11}+R_{4})H}\right. \\&\quad \left. +R_{12}\frac{S_{3}}{D_{3}}e^{i(-R_{12}+R_{4})H}\right] ,\\ f^{\mp }_{11}&=i\left[ g^{\mp }_{18}+g^{\mp }_{19}\frac{I_{3}}{D_{3}}+g^{\mp }_{20}\frac{J_{3}}{D_{3}}-g^{\mp }_{21}\frac{K_{3}}{D_{3}}-g^{\mp }_{22}\frac{S_{3}}{D_{3}}\right] ,\\ f^{\mp }_{12}&=i\left[ h^{\mp }_{18}+h^{\mp }_{19}\frac{I_{3}}{D_{3}}+h^{\mp }_{20}\frac{J_{3}}{D_{3}}-h^{\mp }_{21}\frac{K_{3}}{D_{3}}-h^{\mp }_{22}\frac{S_{3}}{D_{3}}\right] ,\\ g^{\mp }_{18}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{4}\}U_{4}\pm (c_{23}-c_{22})npR_{4}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{-R_{4}H},\\ g^{\mp }_{19}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{7}\}U_{7}\pm (c_{23}-c_{22})npR_{7}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{-R_{7}H},\\ g^{\mp }_{20}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{44}R_{8}\}U_{8}\pm (c_{23}-c_{22})npR_{8}+c_{44}P_{0}]\zeta _{{\mp }_{n}}e^{-R_{8}H},\\ g^{\mp }_{21}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{11}\}U_{11}\pm (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{11}\\&\quad \mp (c_{33}-c_{23})npR_{11}+c_{34}R_{11}^{2} ]\zeta _{{\mp }_{n}}e^{-R_{11}H},\\ g^{\mp }_{22}&=[\{\mp (c_{23}-c_{22})npP_{0}+c_{24}P_{0}R_{12}\}U_{12}\pm (c_{34}-c_{24})npP_{0}+c_{44}P_{0}R_{12}\\&\quad \mp (c_{33}-c_{23})npR_{12}+c_{34}R_{12}^{2} ]\zeta _{{\mp }_{n}}e^{-R_{12}H},\\ g^{\mp }_{23}&=[\{c_{44}R^{\pm }_{7n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{7n}+(c_{33}-c_{23})npR^{\pm }_{7n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{7n}H},\\ g^{\mp }_{24}&=[\{c_{44}R^{\pm }_{8n}+(c_{23}-c_{22})np(P_{0}\pm np)\}U^{\pm }_{8n}+(c_{33}-c_{23})npR^{\pm }_{8n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{8n}H},\\ g^{\mp }_{25}&=[\{c_{44}R^{\pm }_{11n}+c_{24}(P_{0}\pm np)\}U^{\pm }_{11n}+c_{34}R^{\pm }_{11n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{11n}H},\\ g^{\mp }_{26}&=[\{c_{44}R^{\pm }_{12n}+c_{24}(P_{0}\pm np)\}U^{\pm }_{12n}+c_{34}R^{\pm }_{12n}-c_{44}(P_{0}\pm np)]e^{-R^{\pm }_{12n}H},\\ h^{\mp }_{18}&=[\{c_{23}P_{0}-2c_{44}npR_{4}\}U_{4}+c_{33}R_{4}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{R_{4}H},\\ h^{\mp }_{19}&=[\{c_{23}P_{0}-2c_{44}npR_{7}\}U_{7}+c_{33}R_{7}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{R_{7}H},\\ h^{\mp }_{20}&=[\{c_{23}P_{0}-2c_{44}npR_{8}\}U_{8}+c_{33}R_{8}-2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{R_{8}H},\\ h^{\mp }_{21}&=[\{c_{23}P_{0}R_{11}-2c_{24}npP_{0}-c_{34}R_{11}^{2}-2c_{44}npR_{11}\}U_{11}-c_{33}R_{11}^{2}\mp 2c_{34}npR_{11}-c_{34}P_{0}R_{11}\\&\quad \pm 2c_{44}npP_{0}]\zeta _{{\mp }_{n}}e^{-R_{11}H},\\ h^{\mp }_{24}&=[\{c_{23}(P_{0}\pm np)-2c_{44}R^{\pm }_{8n}\}U^{\pm }_{8n}+c_{33}R^{\pm }_{8n}-2c_{44}(P_{0}\pm np)]e^{R^{\pm }_{8n}H},\\ h^{\mp }_{25}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{11n}\}U^{\pm }_{11n}+c_{33}R^{\pm }_{11n}-c_{34}(P_{0}\pm np)]e^{-R^{\pm }_{11n}H},\\ h^{\mp }_{26}&=[\{c_{23}(P_{0}\pm np)+c_{34}R^{\pm }_{12n}\}U^{\pm }_{12n}+c_{33}R^{\pm }_{12n}-c_{34}(P_{0}\pm np)]e^{-R^{\pm }_{12n}H} \end{aligned}$$

Appendix III

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}Q_{1}=l_{1}P_{0}+m_{1}R_{1},~~Q_{2}=l_{2}P_{0}+m_{2}R_{2},~~Q_{3}=l_{3}P_{0}+m_{3}R_{3},~~Q_{4}=l_{4}P_{0}+m_{4}R_{4},\\ &{}Q_{5}=l_{5}P_{0}+m_{5}R_{5},~~Q_{6}=l_{6}P_{0}+m_{6}R_{6},~~Q_{7}=l_{7}P_{0}+m_{7}R_{7},~~Q_{8}=l_{8}P_{0}+m_{8}R_{8},\\ &{}Q_{9}=l_{9}P_{0}+m_{9}R_{9},~~Q_{10}=l_{10}P_{0}+m_{10}R_{10},~~Q_{11}=l_{11}P_{0}+m_{11}R_{11},~~Q_{12}=l_{12}P_{0}+m_{12}R_{12},\\ &{}Q^{\pm }_{1n}=l^{\pm }_{1n}P_{0}+m^{\pm }_{1n}R^{\pm }_{1n},~Q^{\pm }_{2n}=l^{\pm }_{2n}P_{0}+m^{\pm }_{2n}R^{\pm }_{2n},~Q^{\pm }_{3n}=l^{\pm }_{3n}P_{0}+m^{\pm }_{3n}R^{\pm }_{3n},~Q^{\pm }_{4n}=l^{\pm }_{4n}P_{0}+m^{\pm }_{4n}R^{\pm }_{4n},\\ &{}Q^{\pm }_{5n}=l^{\pm }_{5n}P_{0}+m^{\pm }_{5n}R^{\pm }_{5n},~Q^{\pm }_{6n}=l^{\pm }_{6n}P_{0}+m^{\pm }_{6n}R^{\pm }_{6n},~Q^{\pm }_{7n}=l^{\pm }_{7n}P_{0}+m^{\pm }_{7n}R^{\pm }_{7n},~Q^{\pm }_{8n}=l^{\pm }_{8n}P_{0}+m^{\pm }_{8n}R^{\pm }_{8n},\\ &{}Q^{\pm }_{9n}=l^{\pm }_{9n}P_{0}+m^{\pm }_{9n}R^{\pm }_{9n},~~Q^{\pm }_{10n}=l^{\pm }_{10n}P_{0}+m^{\pm }_{10n}R^{\pm }_{10n},~~Q^{\pm }_{11n}=l^{\pm }_{11n}P_{0}+m^{\pm }_{11n}R^{\pm }_{11n},\\ &{}Q^{\pm }_{12n}=l^{\pm }_{12n}P_{0}+m^{\pm }_{12n}R^{\pm }_{12n}, \\ &{}l^{\pm }_{1n}=(U^{\pm }_{1n}c_{24}+c_{44})P_{0}-(U^{\pm }_{1n}c_{44}+c_{34})R^{\pm }_{1n},~~m^{\pm }_{1n}=(U^{\pm }_{1n}c_{23}+c_{34})P_{0}+(U^{\pm }_{1n}c_{34}+c_{33})R^{\pm }_{1n},\\ &{}l^{\pm }_{2n}=(U^{\pm }_{2n}c_{24}+c_{44})P_{0}-(U^{\pm }_{2n}c_{44}+c_{34})R^{\pm }_{2n},~~m^{\pm }_{2n}=(U^{\pm }_{2n}c_{23}+c_{34})P_{0}+(U^{\pm }_{2n}c_{34}+c_{33})R^{\pm }_{2n},\\ &{}l^{\pm }_{3n}=c_{44}P_{0}-U^{\pm }_{3n}c_{44}R^{\pm }_{3n},~~~m^{\pm }_{3n}=U^{\pm }_{3n}c_{23}P_{0}-c_{33}R^{\pm }_{3n},\\ &{}l^{\pm }_{4n}=c_{44}P_{0}-U^{\pm }_{4n}c_{44}R^{\pm }_{4n},~~~m^{\pm }_{4n}=U^{\pm }_{4n}c_{23}P_{0}-c_{33}R^{\pm }_{4n}, \\ &{}l^{\pm }_{5n}=\{c_{44}P_{0}-U^{\pm }_{5n}c_{44}R^{\pm }_{5n} \}e^{-iR^{\pm }_{3n}H},~m^{\pm }_{5n}=\{U^{\pm }_{5n}c_{23}P_{0}-c_{33}R^{\pm }_{5n}\}e^{-i(R^{\pm }_{5n}+R^{\pm }_{3n})H},\\ &{}l^{\pm }_{6n}=\{c_{44}P_{0}+U^{\pm }_{6n}c_{44}R^{\pm }_{6n}\}e^{iR^{\pm }_{6n}H},~~m^{\pm }_{6n}=\{U^{\pm }_{6n}c_{23}P_{0}-c_{33}R^{\pm }_{6n} \}e^{-iR^{\pm }_{5n}H},\\ &{}l^{\pm }_{7n}=\{c_{44}P_{0}+U^{\pm }_{7n}c_{44}R^{\pm }_{7n}\}e^{iR^{\pm }_{7n}H},~~~m^{\pm }_{7n}=\{U^{\pm }_{7n}c_{23}P_{0}-c_{33}R^{\pm }_{7n}\}e^{-iR^{\pm }_{6n}H},\\ &{}l^{\pm }_{8n}=\{(U^{\pm }_{8n}c_{24}+c_{44})P_{0}-(U^{\pm }_{8n}c_{44}+c_{34})R^{\pm }_{8n}\}e^{-iR^{\pm }_{8n}H},\\ &{}m^{\pm }_{8n}=\{(U^{\pm }_{8n}c_{24}+c_{44})P_{0}-(U^{\pm }_{8n}c_{44}+c_{34})R^{\pm }_{8n} \}e^{-iR^{\pm }_{8n}H},\\ &{}l^{\pm }_{9n}=\{(U^{\pm }_{9n}c_{24}+c_{44})P_{0}-(U^{\pm }_{9n}c_{44}+c_{34})R^{\pm }_{9n} \}e^{-iR^{\pm }_{9n}H},\\ &{}m^{\pm }_{9n}=\{(U^{\pm }_{9n}c_{24}+c_{44})P_{0}-(U^{\pm }_{9n}c_{44}+c_{34})R^{\pm }_{9n}\}e^{-iR^{\pm }_{9n}H}, \end{array}\right. } \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Paswan, B. Mathematical Investigation of Reflection and Transmission of Plane Wave at the Corrugated Interface of Orthotropic Layer Sandwiched Between Two Distinct Monoclinic Media. Int. J. Appl. Comput. Math 10, 76 (2024). https://doi.org/10.1007/s40819-024-01704-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01704-w

Keywords

Navigation