Abstract
In the present paper, Turán type inequalities of j generalized \(p-k\) Mittag-Leffler function have been proved. The obtained results are the extension of Turán type inequalities for classical and generalized Mittag-Leffler functions, which provide fresh insights into the j generalized \(p-k\) Mittag-Leffler function and thus provides new properties and proofs. Even several corollaries have been derived as the particular cases.
Similar content being viewed by others
Data availibility
Not applicable.
References
Agarwal, P., Rogosin, S.V., Trujillo, J.J.: Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions. Proc. Math. Sci. 125(3), 291–306 (2015)
Agarwal, P., Nieto, J.J.: Some fractional integral formulas for the Mittag-Leffler type function with four parameters. Open Math. 13(1), 1 (2015)
Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 1–13 (2018)
Alzer, H., Gerhold, S., Kauers, M.: On Turán’s inequality for Legendre polynomials. Expo. Math. 172, 289–312 (2004)
Baricz, Á.: Turán type inequality for generalized complete elliptic integrals. Math. Z. 256, 895–911 (2007)
Baricz, Á.: Turán type inequalities for hypergeometric functions. Proc. Am. Math. Soc. 136(9), 3223–3229 (2008)
Baricz, Á.: Turán type inequalities for some probability density functions. Stud. Sci. Math. Hung. 47(2), 175–189 (2010)
Baricz, Á.: Turán type inequalities for modified Bessel functions. Bull. Aust. Math. Soc. 82(2), 254–264 (2010)
Baricz, Á., Jankov, D., Pogány, T.K.: Turán type inequalities for Krätzel functions. J. Math. Anal. Appl. 388(2), 716–724 (2012)
Baricz, Á., Ponnusamy, S.: On Turán type inequalities for modified Bessel functions. Proc. Am. Math. Soc. 141(2), 523–532 (2013)
Baricz, Á., Ponnusamy, S., Singh, S.: Turán type inequalities for confluent hypergeometric functions of the second kind. Stud. Sci. Math. Hung. 53(1), 74–92 (2016)
Barnard, R.W., Gordy, M.B., Richards, K.C.: A note on Turán type and mean inequalities for the Kummer function. J. Math. Anal. Appl. 349, 259–263 (2009)
Bhandari P. K., Bissu, S. K.: On some inequalities involving Turán-type inequalities. Cogent Math. 3(1), Article: 1130678 (2016)
Bhandari, P.K., Bissu, S.K.: Turán type inequalities for Gauss and confluent hypergeometric functions via Cauchy–Bunyakovsky–Schwarz inequality. Commun. Korean Math. Soc. 33(4), 1285–1301 (2018)
Choi, J., Agarwal, P.: A note on fractional integral operator associated with multiindex Mittag-Leffler functions. Filomat 30(7), 1931–1939 (2016)
Dharmadhikari, S., Joag-Dev, K.: Unimodality, Convexity, and Applications. Academic Press, Boston (1988)
Dou, X. K., Yin, L., Lin, X. L.: Several Turán-Type Inequalities for the Generalized Mittag-Leffler Function. J. Funct. Spaces. Article ID 9509728, 1–6 (2020)
Gehlot, K.S.: Differential equation of generalized \(k\)-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 8(14), 693–698 (2013)
Gehlot, K. S.: Two parameter gamma function and its properties. arXiv:1701.01052 (2017)
Gehlot, K.S.: The \(p-k\) Mittag-Leffler function. PJM 7(2), 628–632 (2018)
Gehlot, K.S., Bhandari, A.: The \(j\)-Generalized \(p-k\) Mittag-Leffler Function Fract. Calc. Appl. Anal. 13(1), 122–129 (2022)
Gorenflo, R., Kilbas, A. A., Mainardi, F., Rogosin, S. V.: Mittag-Leffler Functions, Related Topics and Spplications. Springer, Berlin (2020)
Jain, S., Agarwal, P., Kilicman, A.: Pathway fractional integral operator associated with 3m-parametric Mittag-Leffler functions. Int. J. Appl. Math. Comput. 4(5), 1–7 (2018)
Jain, S., Agarwal, R.P., Agarwal, P., Singh, P.: Certain Unified Integrals Involving a Multivariate Mittag-Leffler Function. Axioms 10(2), 81 (2021)
Luque, L.L.: On a Generalized Mittag-Leffler function. Int. J. Math. Anal. 13(5), 223–234 (2019)
Mehrez, K., Sitnik, S.M.: Turán type inequalities for classical and generalized Mittag-Leffler functions. Anal. Math. 44(4), 521–541 (2018)
Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)
Shukla, A.K., Prajapati, J.C.: On the generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)
Turán, P.: On the zeros of the polynomials of Legendre, C\(\breve{a}\)sopis P\(\breve{e}\)st. Mat. Fys. 75, 113–122 (1950)
Yin, L., Huang, L.: Turán type inequalities for generalized Mittag-Leffler functions. J. Math. Inequal. 13(3), 667–672 (2017)
Acknowledgements
The first Author is thankful to Council of Scientific and Industrial Research(CSIR), India for financial assistance in the form of Junior Research Fellowship (File no: 09/1007(0010)/2020-EMR-I).
Funding
Funding is not applicable for this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Ethical approval
In our paper, we proved Turán type inequalities for j Generalized \(p-k\) Mittag-Leffler function introduced by Gehlot and Bhandari [21].
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gajera, J.B., Jana, R.K. Turán Type Inequalities for j Generalized \(p-k\) Mittag-Leffler Function. Int. J. Appl. Comput. Math 9, 28 (2023). https://doi.org/10.1007/s40819-023-01513-7
Accepted:
Published:
DOI: https://doi.org/10.1007/s40819-023-01513-7