Skip to main content
Log in

Study of Different Heating Effects on Two-Phase Flow of Magnetized Couple Stresses Over a Permeable Stretching Cylinder with Velocity Slip and Radiation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The couple stresses of a dusty fluid across a stretching cylinder are investigated using a mathematical model. The governing flow is 2-dimensional in nature and the cylinder is submerged in a porous medium. Effect of radiation, slip velocity, viscous energy dissipation, Newtonian, and Joule heating are incorporated in our mathematical model. The flow system is governed by basic partial differential equations. Our model's governing equations are translated to coupled nonlinear ordinary differential equations using similarity transformations, which are then solved using the Runge–Kutta Fehlberg iterative technique. Variations in velocity and thermal gradient under the influence of relevant parameters are examined numerically and are illustrated graphically. The non-dimensional skin shear stress (coefficient of skin friction) and the rate of heat transfer are calculated for permeable flow over the cylinder for different flow parameters and are displayed through a table. Later, the numerical results obtained are compared to the results available in literature and found to be in reasonable accord. Results indicate that, the rising of coupling parameter values upsurges the fluid velocity but declines the temperature of both phases (fluid and dust). Enhanced thermal profiles are observed with Newtonian heating parameter in two fluid mixtures. The temperature enhances with increasing the radiation parameter where it decreases for increasing the magnetic field parameter and specific heat ratio. Additionally, the rate of heat transfer reduces for higher values of mass concentration and velocity interaction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

Abbreviations

B 0 :

Constant magnetic field

\(B\) :

Slip parameter

\(Ec\) :

Eckert number

K:

Stoke’s resistance constant (\(6\pi r\mu\))

\({K}_{p}\) :

Permeability parameter

k :

Thermal conductivity(Wm1 K1)

\({k}^{^{\prime}}\) :

Permeability of the medium (m2)

l :

Characteristic length

\({l}^{*}\) :

Parameter of mass concentration

\(M\) :

Magnetic number

m:

Mass of dust particles

N:

Density number(dust particle)

\(\mathrm{Pr}\) :

Prandtl number

\(\mathrm{Re}\) :

Reynolds number

\(Rd\) :

Radiation parameter

\(s\) :

Couple stresses parameter

\(T,{T}_{p}\) :

Fluid and dust particle temperature

T0 :

Reference temperature

\({T}_{\infty }\) :

Ambient temperature

U0 :

Reference velocity

(u, w), (u p , w p):

Components of velocity in \((r, z)\) directions

\(\beta\) :

Interaction parameter(velocity)

\({\beta }_{T}\) :

Interaction parameter for temperature

\(\gamma\) :

Curvature parameter

\({\gamma }_{1}\) :

Specific heat parameter

\(\lambda\) :

Conjugate parameter of Newtonian heating

µ:

Dynamic viscosity

ρ,\({\rho }_{p}\) :

Fluid and particle phase density(with \({\rho }_{p}=mN\))

\({\tau }_{T}\) :

Thermal equilibrium time

\({\tau }_{\upsilon }\) :

Time relaxation of particle phase

References

  1. Saffman, P.G.: On the stability of laminar flow of a dusty gas. J. Fluid Mech. 13(1), 120–128 (1962)

    Article  MathSciNet  Google Scholar 

  2. Chakrabarti, K.M.: Note on boundary layer in a dusty gas. AIAA J. 12(8), 1136–1137 (1974)

    Article  Google Scholar 

  3. Vajravelu, K., Nayfeh, J.: Hydromagnetic flow of a dusty fluid over a stretching sheet. Int. J. Non Linear Mech. 27(6), 937–945 (1992)

    Article  Google Scholar 

  4. Chamkha, A.J.: The Stokes problem for a dusty fluid in the presence of magnetic field, heat generation and wall suction effects. Int. J. Numer. Meth. Heat Fluid Flow 10(1), 116–133 (2000). https://doi.org/10.1108/09615530010297958

    Article  MathSciNet  MATH  Google Scholar 

  5. Attia, H.A.: Unsteady hydromagnetic channel flow of dusty fluid with temperature dependent viscosity and thermal conductivity. Heat Mass Transf. 42(9), 779–787 (2006)

    Article  Google Scholar 

  6. Damseh, R.A.: On boundary layer flow of a dusty gas from a horizontal circular cylinder. Braz. J. Chem. Eng. 27(4), 653–662 (2010)

    Article  Google Scholar 

  7. Ezzat, M.A., El-Bary, A.A., Morsey, M.M.: Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium. Comput. Math. Appl. 59(8), 2868–2879 (2010)

    Article  MathSciNet  Google Scholar 

  8. Gireesha, B.J., Ramesh, G.K., Abel, M.S., Bagewadi, C.S.: Boundary layer flowand heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink. Int. J. Multiph. Flow 37(8), 977–982 (2011)

    Article  Google Scholar 

  9. Gireesha, B.J., Ramesh, G.K., Bagewadi, C.S.: Heat transfer in MHD flow of a dusty fluid over a stretching sheet with viscous dissipation. J. Appl. Sci. Res. 3(4), 2392–2401 (2012)

    Google Scholar 

  10. Gireesha, B.J., Mahanthesh, B., Gorla, R.S.R.: Suspended particle effect on nanofluid boundary layer flow past a stretching surface. J. Nanofluids 3(3), 267–277 (2014)

    Article  Google Scholar 

  11. Manjunatha, P.T., Gireesha, B.J., Prasannakumara, B.C.: Effect of radiation on flow and heat transfer of MHD dusty fluid over a stretching cylinder embedded in a porous medium in presence of heat source. Int. J. Appl. Comput. Math. 3(1), 293–310 (2017)

    Article  MathSciNet  Google Scholar 

  12. Turkyilmazoglu, M.: Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces. Phys. Fluids 29(1), 013302 (2017)

    Article  Google Scholar 

  13. Souayeh, B., Kumar, K.G., Reddy, M.G., Rani, S., Hdhiri, N., Alfannakh, H., Rahimi-Gorji, M.: Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J. Mol. Liq. 290, 11223 (2019)

    Article  Google Scholar 

  14. Rashed, Z.Z.: Impacts of the properties heterogeneity on 3D magnetic dusty nanofluids flow within cubic porous enclosures contain isothermal cylinders. Sci. Rep. (2021). https://doi.org/10.21203/rs.3.rs-967501/v1

    Article  Google Scholar 

  15. Ibrahim, M., Saeed, T., Bani, F., Sedeh, S.N., Chu, Y.-M., Toghraiec, D.: Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field. Powder Technol. 384, 522–541 (2021). https://doi.org/10.1016/j.powtec.2021.01.077

    Article  Google Scholar 

  16. Nazeer, M., Hussain, F., Khan, M.I., Shahzad, Q., Chu, Y.-M., Kadry, S.: MHD two-phase flow of Jeffrey fluid suspended with Hafnium and crystal particles: analytical treatment. Numer. Methods Partial Differ. Eq. 2021, 1–18 (2021). https://doi.org/10.1002/num.22766

    Article  Google Scholar 

  17. Walicki, E., Walicka, A.: Interia effect in the squeeze film of a couple-stress fluid in biologicalbearings. Int. J. Appl. Mech. Eng. 4, 363–373 (1999)

    MATH  Google Scholar 

  18. Nagaraju, G., Ramana Murthy, J.V.: Mhd flow of Longitudinal and Torsional oscillations of a circular cylinder with suction in a couple stress fluid. Int. J. Appl. Mech. Eng. 13, 1099–1114 (2013)

    Article  Google Scholar 

  19. Nagarajua, G., Matta, A., Kaladhar, K.: Effects of chemical reaction and thermal radiation on heat generated stretching sheet in a couple stress fluid flow. Front. Heat Mass Transf. 7, 1–5 (2016)

    Google Scholar 

  20. Asad, S., Alsaedi, A., Hayat, T.: Flow of couple stress fluid with variable thermal conductivity. Appl. Math. Mech. 37(3), 315–324 (2016)

    Article  MathSciNet  Google Scholar 

  21. Jangili, S., Adesanya, S.O., Ogunseye, H.A., Lebelo, R.: Couple stress fluid flow with variable properties: a second law analysis. Math. Methods Appl. Sci. 42(1), 85–98 (2019)

    Article  MathSciNet  Google Scholar 

  22. Aggarwal, A.K., Verma, A.: Effect of hall currents on thermal instability of dusty couple stress fluid. Arch. Thermodyn. 37(3), 3–18 (2016)

    Article  Google Scholar 

  23. Stanly, W., Vasantha Kumari, R.: Effect of rotation on dusty couple-stress fluid with hydromagnetic field heated below through porous medium. World J. Eng. 15(1), 148–155 (2018)

    Article  Google Scholar 

  24. Gajjela, N., Nandkeolyar, R.: Investigating the magnetohydrodynamic flow of a couple stress dusty fluid along a stretching sheet in the presence of viscous dissipation and suction. Heat Transf. 50(3), 2709–2724 (2021). https://doi.org/10.1002/htj.22001

    Article  Google Scholar 

  25. Munivenkatappa, U., Aswathanarayana, D.P., Sreevallabha Reddy, A., SureshBabu, R.: Effect of couple stress fluid in an irregular couette flow channel: an analytical approach. Biointerface Res. Appl. Chem. 12(4), 4686 (2022)

    Google Scholar 

  26. Dogonchi, A.S., Waqas, M., Seyyedi, S.M., Hashemi-Tilehnoee, M., Ganji, D.D.: CVFEM analysis for Fe3O4—H2O nanofluid in an annulus subject to thermal radiation. Int. J. Heat Mass Transf. 132, 473–483 (2019)

    Article  Google Scholar 

  27. Seyyedi, S.M., Dogonchi, A.S., Nuraei, R., Ganji, D.D., Hashemi-Tilehnoee, M.: Numerical analysis of entropy generation of a nanofluid in a semi-annulus porous enclosure with different nanoparticleshapes in the presence of a magnetic field. Eur. Phys. J. Plus. 134, 268 (2019)

    Article  Google Scholar 

  28. Dogonchi, A.S., Hashemi-Tilehnoee, M., Waqas, M.: The Influence of different shapes of nanoparticle on Cu-H2O nanofluids in a partially heated irregular wavy enclosure. Phys. A (2019). https://doi.org/10.1016/j.physa.2019.123034

    Article  MATH  Google Scholar 

  29. Mondal, S., Dogonchi, A.S., Tripathi, N., Waqas, M., Seyyedi, S.M., Hashemi-Tilehnoee, M., Ganji, D.D.: A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM. J. Braz. Soc. Mech. Sci. Eng. 42, 19 (2019). https://doi.org/10.1007/s40430-019-2103-2

    Article  Google Scholar 

  30. Hashemi-Tilehnoee, M., Dogonchi, A.S., Seyyedi, S.M., Sharifpur, M.: Magneto-fluid dynamic and second law analysis in a hot porous cavity filled by nano fluid and nano-encapsulated phase change material suspension with different layout of cooling channels. J. Energy Storage 31, 101720 (2020)

    Article  Google Scholar 

  31. Sakiadis, B.C.: Boundary- layer behavior on continuous solid surfaces: I. Boundarylayer equations for two- dimensional and axisymmetric flow. AIChE J. 7(1), 26–28 (1961)

    Article  Google Scholar 

  32. Crane, L.J.: Boundary layer flow due to a stretching cylinder. Zeitschrift für angewandte Mathematik und Physik ZAMP. 26(5), 619–622 (1975)

    Article  Google Scholar 

  33. Wang, C.Y.: Fluid flow due to a stretching cylinder. Phys. Fluids 31(3), 466–468 (1988)

    Article  Google Scholar 

  34. Mukhopadhyay, S.: MHD boundary layer slips flow along a stretching cylinder. Ain Shams Eng. J. 4(2), 317–324 (2013)

    Article  Google Scholar 

  35. Chauhan, D.S., Agrawal, R., Rastogi, P.: Magneto hydrodynamic slip flow and heat transfer in a Porous medium over a stretching cylinder: homotopy analysis method. Numer. Heat Transf. Part A: Appl. 62(2), 136–157 (2012)

    Google Scholar 

  36. Nandkeolyar, R., Sibanda, P.: On convective dusty flow past a vertical stretching sheet with internal heat absorption. J. Appl. Math. 2013, 806724 (2013). https://doi.org/10.1155/2013/806724

    Article  MathSciNet  MATH  Google Scholar 

  37. Punith Gowda, R.J., Naveen Kumar, R., Prasannakumara, B.C.: Two-phase darcy-forchheimer flow of dusty hybrid nanofluid with viscous dissipation over a cylinder. Int. J. Appl. Comput. Math 7, 95 (2021). https://doi.org/10.1007/s40819-021-01033-2

    Article  MathSciNet  MATH  Google Scholar 

  38. Sinha, D., Jain, P., Siddheshwar, P.G.: Boundary layer flow and thermal analysis of a Cu-Nanoliquid past a stretching cylinder. Int. J. Appl. Comput. Math. 3, 2559–2572 (2017). https://doi.org/10.1007/s40819-016-0255-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Gangadhar, K., Keziya, K., Rushi Kumar, B.: Effect of thermal radiation on heat transfer of ferrofluid over a stretching cylinder with convective heating. Int. J. Eng. Technol. 7, 261–268 (2018)

    Article  Google Scholar 

  40. Khan, M., Hashim, A.H.: Effects of thermal radiation and slip mechanism on mixed convection flow of williamson nanofluid over an inclined stretching cylinder. Commun. Theor. Phys. 71, 1405–1415 (2019)

    Article  MathSciNet  Google Scholar 

  41. Ali, A., Kanwal, T., Awais, M., Shah, Z., Kumam, P., Thounthong, P.: Impact of thermal radiation and non-uniform heat flux on MHD hybrid nano fluid along a stretching cylinder. Sci. Rep. 11, 20262 (2021). https://doi.org/10.1038/s41598-021-99800-0

    Article  Google Scholar 

  42. Waqas, H., Imran, M., Muhammad, T., Sadiq, M., Ellahi, H.: On bio-convection thermal radiation in Darcy-Forchheimer flow of nanofluid with gyrotactic motile microorganism under Wu’s slip over stretching cylinder/plate. Int. J. Numer. Methods Heat Fluid Flow (2020). https://doi.org/10.1108/HFF-05-2020-0313

    Article  Google Scholar 

  43. Shahid, A., Bhatti, M.M., Ellahi, R., Mekheimer, Kh.S.: Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: application in solar energy. Sustain. Energy Technol. Assess. 52, 102029 (2022)

    Google Scholar 

  44. Shehzad, N., Zeeshan, A., Shakeel, M., Ellahi, R., Sadiq Sait, M.: Effects of magneto hydrodynamics flow on multilayer coatings of newtonian and non-newtonian fluids through porous inclined rotating channel. Coatings. 12, 430 (2022). https://doi.org/10.3390/coatings12040430

    Article  Google Scholar 

  45. Zeeshan, A., Shehzad, N., Atif, M., Ellahi, R., Sait, S.M.: Electromagnetic flow of SWCNT/MWCNT suspensions in two immiscible water- and engine-oil-based newtonian fluids through porous media. Symmetry. 14, 406 (2022). https://doi.org/10.3390/sym14020406

    Article  Google Scholar 

  46. Makinde, O.D.: Effects of viscous dissipation and Newtonian heating on boundary layer flow of nano fluids over a flat plate. Int. J. Numer. Meth. Heat Fluid Flow 23(8), 1291–1303 (2013). https://doi.org/10.1108/HFF-12-2011-0258

    Article  MATH  Google Scholar 

  47. Farooq, M., Gull, N., Alsaedi, A., Hayat, T.: MHD flow of a Jeffrey fluid with Newtonian heating. J. Mech. 31(3), 319–329 (2015)

    Article  Google Scholar 

  48. Hayat, T., Hussain, Z., Alsaedi, A., Farooq, M.: Magnetohydrodynamic flow by astretching cylinder with Newtonian heating and homogeneous-heterogeneous reactions. Plosone. 11(6), e0156955 (2016)

    Article  Google Scholar 

  49. Hayat, T., Khan, M.I., Waqas, M., Alsaedi, A.: Newtonian heating effect in nanofluidflow by a permeable cylinder. Results Phys. 7, 256–262 (2017)

    Article  Google Scholar 

  50. Nawaz, M., Zeeshan, A., Ellahi, R., Abbasbandy, S., Rashidi, S.: Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method. Int. J. Numer. Meth. Heat Fluid Flow 25(3), 665–684 (2015). https://doi.org/10.1108/HFF-04-2014-0103

    Article  MathSciNet  MATH  Google Scholar 

  51. Mishra, M., Panda, D., Swain, K.: Effects of joule heating and viscous dissipation on mhd flow and heat transfer of casson fluid over a stretching cylinder in a porous medium. Int. J. Adv. Sci. Technol. 29(3), 9612–9623 (2020)

    Google Scholar 

  52. Zhao, T.-H., Khan, M.I., Chu, Y.-M.: Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Meth Appl. Sci. 2021, 1–19 (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  53. Qayyum, S., Khan, M.I., Masood, F., Chu, Y.-M., Kadry, S., Nazeer, M.: Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first-order velocity slip. Math. Meth Appl. Sci. 2020, 1–10 (2019). https://doi.org/10.1002/mma.6735

    Article  MATH  Google Scholar 

  54. Abbas, S.Z., Nayak, M.K., Mabood, F., Dogonchi, A.S., Chu, Y.-M., Khan, W.A.: Darcy Forchheimer electromagnetic stretched flow of carbon nanotubes over an inclined cylinder: Entropy optimization and quadratic chemical reaction. Math. Meth Appl. Sci. 2020, 1–23 (2020). https://doi.org/10.1002/mma.6956

    Article  Google Scholar 

  55. Song, Y.-Q., Waqas, H., Al-Khaled, K., Farooq, U., Khan, S.U., Ijaz Khan, M., Chu, Y.-M., Qayyum, S.: Bioconvection analysis for Sutter by nanofluid over an axially stretched cylinder with melting heat transfer and variable thermal features: a Marangoni and solutal model. Alex. Eng. J. 60, 4663–4675 (2021). https://doi.org/10.1016/j.aej.2021.03.056

    Article  Google Scholar 

Download references

Funding

The authors declare that funding information is not available for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Ethics declarations

Conflict of interest

The authors declare that we have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garvandha, M., Nagaraju, G., kumar, D. et al. Study of Different Heating Effects on Two-Phase Flow of Magnetized Couple Stresses Over a Permeable Stretching Cylinder with Velocity Slip and Radiation. Int. J. Appl. Comput. Math 8, 249 (2022). https://doi.org/10.1007/s40819-022-01444-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01444-9

Keywords

Navigation