Skip to main content

Tracer Dispersion due to Pulsatile Casson Fluid Flow in a Circular Tube with Chemical Reaction Modulated by Externally Applied Electromagnetic Fields


The present article describes a detailed mathematical investigation of electro-magneto-hydrodynamic dispersion in the pulsatile flow of a Casson viscoplastic fluid in a tube packed with a porous medium. Using appropriate transformations, the model is rendered non-dimensional. Via the generalized dispersion method and finite Hankel transforms, analytical solutions for the solute concentration dispersion and convection coefficients have been obtained. The impact of the Hartmann (magnetic) number, Debye–Hückel(electrokinetic) parameter, Darcy number, and chemical reaction parameter with regard to dispersion phenomena has been studied. The evolution in velocity and concentration profiles are investigated graphically for realistic ranges of the various physical parameters. The present investigation, highlights the dual nature of the Debye–Hückel parameter in the dispersion process. Increment in the lower or higher magnitudes of Debye–Hückel parameter induces or decreases the magnitudes of effective dispersion coefficient, whereas it induces a reverse dual mechanism in the zenith of the average concentration profile. The present simulations are relevant to enhancing the performance of diagnostic tools in biochemical engineering, pumping of intelligent rheological working fluids in biomedicine, and also soft robotics.

This is a preview of subscription content, access via your institution.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

Not applicable


  1. Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 219, 186–203 (1953)

    Google Scholar 

  2. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 235, 67–77 (1956)

    Google Scholar 

  3. Gill, W.-N., Sankarasubramanian, R., Taylor, G.I.: Dispersion of a non-uniform slug in time-dependent flow. Proc. R. Soc. London. A. Math. Phys. Sci. 322, 101–117 (1971)

    MATH  Google Scholar 

  4. Barton, N.G.: On the method of moments for solute dispersion. J. Fluid Mech. 126, 205–218 (1983)

    Article  MATH  Google Scholar 

  5. Roy, A.K., Saha, A.K., Debnath, S.: Unsteady convective diffusion with interphase mass transfer in Casson liquid. Period. Polytech. Chem. Eng. 62, 215–223 (2018)

    Article  Google Scholar 

  6. Katz, S.: Chemical reactions catalysed on a tube wall. Chem. Eng. Sci. 10, 202–211 (1959)

    Article  Google Scholar 

  7. Walker, R.E.: Chemical reaction and diffusion in a catalytic tubular reactor. Phys. Fluids. 4, 1211–1216 (1961)

    Article  Google Scholar 

  8. Gupta, P.S., Gupta, A.S.: Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates. Proc. R. Soc. London. A. Math. Phys. Sci. 330, 59–63 (1972)

    MATH  Google Scholar 

  9. Shukla, J.B., Parihar, R.S., Rao, B.R.P.: Dispersion in non-Newtonian fluids: effects of chemical reaction. Rheol. Acta. 18, 740–748 (1979)

    Article  MATH  Google Scholar 

  10. Kumar, J.P., Umavathi, J.C., Basavaraj, A.: Effects of homogeneous and heterogeneous reactions on the dispersion of a solute for immiscible viscous fluids between two plates. (2012)

  11. Roy, A.K., Saha, A.K., Debnath, S.: Hydrodynamic dispersion of solute under homogeneous and heterogeneous reactions. Int. J. Heat Technol. 37, 387 (2019)

    Article  Google Scholar 

  12. Roy, A.K., Shaw, S.: Shear augmented microvascular solute transport with a two-phase model: application in nanoparticle assisted drug delivery. Phys. Fluids. 33, 31904 (2021)

    Article  Google Scholar 

  13. Das, P., Mandal, P.K.: Others: solute dispersion in Casson fluid flow through a stenosed artery with absorptive wall. Zeitschrift für Angew. Math. und Phys. 71, 1–24 (2020)

    MATH  Google Scholar 

  14. Rana, J., Murthy, P.: Solute dispersion in pulsatile Casson fluid flow in a tube with wall absorption. J. Fluid Mech. 793, 877–914 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rana, J., Murthy, P.: Unsteady solute dispersion in Herschel-Bulkley fluid in a tube with wall absorption. Phys. Fluids. 28, 111903 (2016)

    Article  Google Scholar 

  16. Debnath, S., Saha, A.K., Mazumder, B.S., Roy, A.K.: Dispersion phenomena of reactive solute in a pulsatile flow of three-layer liquids. Phys. Fluids. 29, 97107 (2017)

    Article  Google Scholar 

  17. Debnath, S., Saha, A.K., Mazumder, B.S., Roy, A.K.: Hydrodynamic dispersion of reactive solute in a Hagen-Poiseuille flow of a layered liquid. Chinese J. Chem. Eng. 25, 862–873 (2017)

    Article  Google Scholar 

  18. Debnath, S., Saha, A.K., Siddheshwar, P.G., Roy, A.K.: On dispersion of a reactive solute in a pulsatile flow of a two-fluid model. J. Appl. Fluid Mech. 12, 987–1000 (2019)

    Article  Google Scholar 

  19. Debnath, S., Saha, A.K., Mazumder, B.S., Roy, A.K.: On transport of reactive solute in a pulsatile Casson fluid flow through an annulus. Int. J. Comput. Math. 97, 2303–2319 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chauhan, S.S., Tiwari, A.: Solute dispersion in non-Newtonian fluids flow through small blood vessels: a varying viscosity approach. Eur. J. Mech. 94, 200–211 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Biswas, S., Sarifuddin, Mandal, P.K.: Unsteady transport and two-phase binding of a drug in an atherosclerotic artery. Phys. Fluids. 34, 41905 (2022)

  22. Bég, O.A., Bhargava, R., Rawat, S., Halim, K., Takhar, H.S.: Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica 43, 391–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, M., Wang, S., Wei, S.: Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. J. Nonnewton. Fluid Mech. 201, 135–139 (2013)

    Article  Google Scholar 

  24. Wang, C., Wong, T.N., Yang, C., Ooi, K.T.: Characterization of electroosmotic flow in rectangular microchannels. Int. J. Heat Mass Transf. 50, 3115–3121 (2007)

    Article  MATH  Google Scholar 

  25. Bandopadhyay, A., Goswami, P., Chakraborty, S.: Regimes of streaming potential in cylindrical nano-pores in presence of finite sized ions and charge induced thickening: an analytical approach. J. Chem. Phys. 139, 224503 (2013)

    Article  Google Scholar 

  26. Misra, J.C., Chandra, S., Herwig, H.: Flow of a micropolar fluid in a micro-channel under the action of an alternating electric field: Estimates of flow in bio-fluidic devices. J. Hydrodyn. 27, 350–358 (2015)

    Article  Google Scholar 

  27. Tzirtzilakis, E.E., Loukopoulos, V.C.: Biofluid flow in a channel under the action of a uniform localized magnetic field. Comput. Mech. 36, 360–374 (2005)

    Article  MATH  Google Scholar 

  28. Sarojamma, G., Ramana, B.: Effect of Magnetic Field on the Dispersion of a Solute in Fluid Flow through a Conduit with Interphase Mass Transfer. In: 2012 Spring Congress on Engineering and Technology. pp. 1–4 (2012)

  29. Mazumdar, H.P., Ganguly, U.N., Venkatesan, S.K.: Some effects of a magnetic field on the flow of a newtonian fluid through a circular tube. (1996)

  30. Sud, V.K., Sekhon, G.S., Mishra, R.K.: Pumping action on blood by a magnetic field. Bull. Math. Biol. 39, 385–390 (1977)

    Article  Google Scholar 

  31. Dash, R.K., Mehta, K.N., Jayaraman, G.: Casson fluid flow in a pipe filled with a homogeneous porous medium. Int. J. Eng. Sci. 34, 1145–1156 (1996)

    Article  MATH  Google Scholar 

  32. Mehmood, O.U., Mustapha, N., Shafie, S.: Unsteady two-dimensional blood flow in porous artery with multi-irregular stenoses. Transp. porous media. 92, 259–275 (2012)

    Article  MathSciNet  Google Scholar 

  33. Dentz, M., Icardi, M., Hidalgo, J.J.: Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851–882 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shah, P.D., Tiwari, A., Chauhan, S.S.: Solute dispersion in micropolar-Newtonian fluid flowing through porous layered tubes with absorbing walls. Int. Commun. Heat Mass Transf. 119, 104724 (2020)

    Article  Google Scholar 

  35. Nakamura, M., Sawada, T.: Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis. (1988)

  36. Eldabe, N.T.M., Saddeck, G., El-Sayed, A.F.: Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mech. Mech. Eng. 5, 237–251 (2001)

    Google Scholar 

  37. Roy, A.K., Saha, A.K., Debnath, S.: On dispersion in oscillatory annular flow driven jointly by pressure pulsation and wall oscillation. J. Appl. Fluid Mech. 10, 1487–1500 (2017)

    Article  Google Scholar 

  38. Roy, A.K., Saha, A.K., Debnath, S.: Effect of multiple reactions on the transport coefficients in pulsatile flow through an annulus. Int. Commun. Heat Mass Transf. 110, 104369 (2020)

    Article  Google Scholar 

  39. Bugliarello, G., Sevilla, J.: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7, 85–107 (1970)

    Article  Google Scholar 

  40. Masliyah, J.H., Bhattacharjee, S.: Electrokinetic and colloid transport phenomena. Wiley, HoboKen (2006)

    Book  Google Scholar 

  41. Bég, O.A.: Multi-physical electro-magnetic propulsion fluid dynamics: mathematical modelling and computation. 2–88 (2018)

  42. Zeng, L., Chen, G.Q.: Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol. Modell. 222, 293–300 (2011)

    Article  Google Scholar 

  43. Gill, W.-N.: A note on the solution of transient dispersion problems. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 298, 335–339 (1967)

    MATH  Google Scholar 

  44. Gill, W.N., Sankarasubramanian, R.: Exact analysis of unsteady convective diffusion. Proc. R. Soc. London. A. Math. Phys. Sci. 316, 341–350 (1970)

    MATH  Google Scholar 

  45. Roy, A.K., Bég, O.A.: Mathematical modelling of unsteady solute dispersion in two-fluid (micropolar-Newtonian) blood flow with bulk reaction. Int. Commun. Heat Mass Transf. 122, 105169 (2021)

    Article  Google Scholar 

  46. Debnath, S., Paul, S., Roy, A.K.: Transport of reactive species in oscillatory annular flow. J Appl Fluid Mech 11(2), 405–417 (2018)

    Article  Google Scholar 

  47. Roy, A.K., Saha, A.K., Ponalagusamy, R., Debnath, S.: Mathematical model on magneto-hydrodynamic dispersion in a porous medium under the influence of bulk chemical reaction. Korea-Australia Rheol. J. 32, 287–299 (2020)

    Article  Google Scholar 

  48. Paul, S., Ng, C.-O.: Dispersion in electroosmotic flow generated by oscillatory electric field interacting with oscillatory wall potentials. Microfluid. Nanofluidics. 12, 237–256 (2012)

    Article  Google Scholar 

  49. Bég, O.A., Bég, T.A., Munjam, S.R., Jangili, S.: Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct. Int. J. Hydrogen Energy. 46, 17677–17696 (2021)

    Article  Google Scholar 

  50. Bég, O.A., Ferdows, M., Shamima, S., Islam, M.N.: Numerical simulation of Marangoni magnetohydrodynamic bio-nanofluid convection from a non-isothermal surface with magnetic induction effects: a bio-nanomaterial manufacturing transport model. J. Mech. Med. Biol. 14, 1450039 (2014)

    Article  Google Scholar 

  51. Ponalagusamy, R., Priyadharshini, S.: Couple stress fluid model for pulsatile flow of blood in a porous tapered arterial stenosis under magnetic field and periodic body acceleration. J. Mech. Med. Biol. 17, 1750109 (2017)

    Article  Google Scholar 

Download references


No funding.

Author information

Authors and Affiliations



All the authors contributed to performing the study.

Corresponding author

Correspondence to Ashis Kumar Roy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Magnetic and Electric field Expressions

Magnetic field in Eq. (4) and Poisson–Boltzmann Eq. (5), which are expressed as follows:

Maxwell’s equations are a set of four partial differential equations that describe the force of electromagnetism in an electromagnetic field. The electromagnetic theory depends on Gauss’ law, Faraday’s law, Ampere’s law, and the current continuity equation. These equations are stated mathematically as:

$$ \nabla .B_{0}^{ * } = 0 $$
$$ \nabla \times E^{ * } = - \frac{{\partial B_{0}^{ * } }}{{\partial t^{ * } }} $$
$$ \nabla \times M^{ * } = J^{ * } $$
$$ \nabla .J^{ * } = 0 $$

where \(B_{0}^{ * }\) denotes the magnetic flux, \(E^{ * }\) indicates the electric field, \(M^{ * }\) represents the magnetic field and \(J^{ * }\) designates the current density.

Here \(B_{0}^{ * } = B_{1}^{ * } + B_{2}^{ * }\) (Sum of external and induced magnetic field).

Under a small magnetic Reynolds number induced magnetic field \(\left( {B_{2}^{ * } } \right)\) is negligibly small compared to the external magnetic field \(\left( {B_{1}^{ * } } \right)\).

Further, the electric field due to the polarization change is also negligible. By Ohm’s law

$$ J^{ * } = \sigma^{ * } \left( {E^{ * } + u^{ * } \times B_{0}^{ * } } \right) $$

where \(\sigma^{ * }\) denotes the electrical conductivity.

The electric fields imposed and induced are presumed to be negligible.

Hence, the term \(J^{ * } \times B_{0}^{ * }\) is simplified as \(- \sigma^{ * } B_{0}^{{^{{ *^{2} }} }} u^{ * }\).

According to the theories of Electrohydrodynamics and Navier–Stokes equations for an incompressible viscous dielectric fluid, the Electrohydrodynamics equations can be summarized as.

$$ \nabla .E^{ * } = \frac{{\rho_{e}^{ * } }}{\kappa } \, \left( {\text{Gauss law}} \right) $$
$$ E^{ * } = - \nabla \Phi^{ * } \, \left( {\text{Relation between irrotational field and scalar potential}} \right){.} $$
$$ \nabla .J^{ * } + \frac{{\partial \rho_{e}^{ * } }}{{\partial t^{ * } }} = 0 $$
$$ \nabla .u^{ * } = 0 $$
$$ \rho^{ * } \frac{{du^{ * } }}{{dt^{ * } }} = - \nabla p^{ * } + \mu^{ * } \nabla^{2} u^{ * } + \rho_{e}^{ * } E_{z}^{ * } $$

Substituting Eqn. (61) into Eqn. (60), we get the following Poisson’s equation

$$ \nabla^{2} \Phi^{ * } = - \frac{{\rho_{e}^{ * } }}{\kappa } $$

where \(\rho_{e}^{ * }\) denotes the net charge density, \(\kappa\) designates the permittivity of the free space (dielectric constant), \(\Phi^{ * }\) represents the electric potential and \(E_{z}^{ * }\) indicates the component of external electric field applied in the axial direction (Table

Table 3 List of variable and parameters


Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murugan, D., Roy, A.K., Ponalagusamy, R. et al. Tracer Dispersion due to Pulsatile Casson Fluid Flow in a Circular Tube with Chemical Reaction Modulated by Externally Applied Electromagnetic Fields. Int. J. Appl. Comput. Math 8, 221 (2022).

Download citation

  • Accepted:

  • Published:

  • DOI:


  • Dispersion
  • Casson non-newtonian fluid
  • Bulk-flow reaction
  • Hartmann number
  • Debye–Hückel parameter
  • Darcy number