Skip to main content
Log in

The Iterated Newcomb-Benford Distribution for Structured Systems

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The Newcomb-Benford distribution of first digits has been applied widely in many areas ranging from engineering to natural and biological sciences for the investigation of self-similarity and randomness. In this article, we consider systems for which the data is not enough to obtain proper first digit statistics, and we propose the use of an iterated version of the distribution where the statistics are aggregated over different scales on grounds that the first digit distribution is approximately scale invariant across a wide range of phenomena, and also because scaling and recomputing first digits is not a linear process. The method presented in this paper generates new data which can be very important for analysis in structured natural systems where data is limited. We provide examples of the use of the iterated test for data in two different biological applications, viz. that of the secretome and the genetic code in both of which the raw data does not include all the nine different first digits. The paper includes proposals for further research on the idea of data amplification using scaling transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All available data is in the manuscript.

References

  1. Newcomb, S.: Note on the frequency of use of different digits in natural numbers. Am. J. Math. 4, 39–40 (1881)

    Article  MathSciNet  Google Scholar 

  2. Benford, F.: The law of anomalous numbers. Proc. Am Philos. Soc. 78(4), 551–572 (1938)

    MATH  Google Scholar 

  3. Hill, T.P.: A statistical derivation of the significant-digit law. Stat. Sci. 10, 354–363 (1995)

    Article  MathSciNet  Google Scholar 

  4. Hill, T.P.: The first-digit phenomenon. Am. Sci. 86, 358–363 (1998)

    Article  Google Scholar 

  5. Kak, S.: Variations of the Newcomb-Benford law. arXiv (2018). https://arxiv.org/ftp/arxiv/papers/1806/1806.06695.pdf

  6. Sambridge, M., Tkalčić, H., Jackson, A.: Benford’s law in the natural sciences. Geophys. Res. Lett. 37, L22301 (2010)

    Article  Google Scholar 

  7. Prandl, S. et al.: An investigation of power law probability distributions for network anomaly detection. In: IEEE Security and Privacy Workshops (SPW), 217–222 (2017)

  8. Nigrini, M.J., Miller, S.J.: Benford’s law applied to hydrology data—results and relevance to other geophysical data. Math. Geol. 39, 469–490 (2007)

    Article  Google Scholar 

  9. Kak, S.: Power series models of self-similarity in social networks. Inf. Sci. 376, 31–38 (2017)

    Article  Google Scholar 

  10. McCoy, M.M., Allen, A.P., Gilloly, J.F.: The random nature of genome architecture: predicting open reading frame distributions. PLoS ONE 4(7), e6456 (2009)

    Article  Google Scholar 

  11. Friar, J.L., Goldman, T., Perez-Mercader, J.: Genome sizes and the Benford distribution. PLoS ONE 7(5), e36624 (2012)

    Article  Google Scholar 

  12. Kak, S.: Significance testing in natural and biological systems: a review. TechRxiv (2021). https://doi.org/10.36227/techrxiv.14599836.v1

  13. Wong, S.C.Y.: Testing Benford’s Law with the First Two Significant Digits. University of Victoria, Thesis (2010)

    Google Scholar 

  14. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, W. H (1983)

    Book  Google Scholar 

  15. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley (2003)

  16. Kak, S.: Information theory and dimensionality of space. Sci. Rep. 10, 20733 (2020)

    Article  Google Scholar 

  17. Kak, S.: The intrinsic dimensionality of data. Circ. Syst. Signal Process. 40, 2599–2607 (2021)

    Article  Google Scholar 

  18. Kak, S.: Fractals with optimum information dimension. Circuits Syst. Signal Process. 40 (2021). https://doi.org/10.1007/s00034-021-01726-5

  19. Kak, S.: The base-e representation of numbers and the power law. Circ. Syst. Signal Process. 40, 490–500 (2021)

    Article  Google Scholar 

  20. Kak, S.: Asymptotic freedom in noninteger spaces. Sci. Rep. 11, 1–5 (2021)

    Article  Google Scholar 

  21. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  Google Scholar 

  22. Vicsek, T.: Fluctuations and scaling in biology. Oxford University Press (2001)

  23. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading, MA (1949)

    Google Scholar 

  24. Mukherjee, P., Mani, S.: Methodologies to decipher the cell secretome. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics. 1834(11), 2226–32 (2013)

  25. Uhlén M et al.: Proteomics. Tissue-based map of the human proteome. Science. 347(6220), 1260419 (2015)

  26. Kak, S.: The e-dimensionality of genetic information. TechRxiv (2021). https://doi.org/10.36227/techrxiv.14977479.v1

  27. Crick, F.H.C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1982)

    Article  Google Scholar 

  28. Baranov, P.V., Venin, M., Provan, G.: Codon size reduction as the origin of the triplet genetic code. PLoS ONE 4(5), e5708 (2009)

  29. Attie, O., Sulkow, B., Di, C., Qiu, W.: Genetic codes optimized as a traveling salesman problem. PLoS ONE 14(10), e0224552 (2019)

  30. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with uncertainty. Entropy 17, 885–902 (2015)

    Article  MathSciNet  Google Scholar 

  31. Agarwal, P., Singh, R.: Modelling of transmission dynamics of Nipah virus (Niv): a fractional order approach. Physica A: Statist. Mech. Appl. 547, 124243 (2020)

  32. Yang X.J., Gao F., Srivastava H.M.: A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math., 339 (2018)

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

This represents author’s own work.

Corresponding author

Correspondence to Subhash Kak.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kak, S. The Iterated Newcomb-Benford Distribution for Structured Systems. Int. J. Appl. Comput. Math 8, 51 (2022). https://doi.org/10.1007/s40819-022-01251-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01251-2

Keywords

Navigation