Skip to main content
Log in

MHD Flow Analysis of a Williamson Nanofluid due to Thomson and Troian Slip Condition

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In current challenge, the entropy generation approach is painted particularly as a powerful tool for the analysis of the brain function, in accordance with the theoretical and philosophical approach of Saint Thomas Aquinas. The present assessment is considered to look at the entropy minimization in MHD flow of a Williamson nanofluid flow past a stretchable surface under the effects of Thomson and Troian boundary condition. The flow is induced in the system because of the linear movement of stretched surface which is porous. Heat and mass transportations are the modern aspects in the flow, for this, theories of Cattaneo-Christov heat flux is used in this study. Moreover, viscous dissipation and thermal radiation impacts are taken place in the energy equation with linear expression. Additionally, the impact of heat generation or absorption with nonlinear expressions is also considered in the existing continuation which makes the study quite versatile. The finite difference strategy, for example bvp4c from Mat Lab is applied to solve the reduced ordinary differential equations. The proposed technique is more appropriate to solve the considered problem in the present analysis when compared to other previous works. From all these lines, observations are noted as due to the slip factor the velocity profile is declined and temperature distribution is improved. Because of utility of nanoparticles, Bejan number distribution is increased with the Weissenberg number and thermophoresis constant increments. From the analysis, present study is applicable in the fields of manufacturing processes and improvement in energy and heat resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

Not Applicable.

Abbreviations

\(\left( {u. v} \right)\) :

Velocity components \(\left( {ms^{ - 1} } \right)\)

\(\left( {x,y} \right)\) :

Cartesian coordinates \(\left( m \right)\)

\(B_{0}\) :

Magnetic field strength

\(T\) :

Nanofluid temperature \(\left( K \right)\)

\(T_{w}\) :

Wall temperature \(\left( K \right)\)

\(T_{\infty }\) :

Ambient temperature \(\left( K \right)\)

\(C\) :

Nanoparticle volume fraction

\(C_{\infty }\) :

Ambient nanoparticle volume fraction

\(c_{p}\) :

Specific heat \(\left( {JK^{ - 1} kg^{ - 1} } \right)\)

\(\rho c_{p}\) :

Heat capacity \(\left( {Jkg^{ - 3} K^{ - 1} } \right)\)

\(q_{r}\) :

Radiative heat flux

\(D_{B}\) :

Brownian diffusion coefficient \(\left( {m^{2} s^{ - 1} } \right)\)

\(D_{T}\) :

Thermophoretic diffusion coefficient \(\left( {m^{2} s^{ - 1} } \right)\)

\(u_{w}\) :

Velocity of the plate \(\left( {ms^{ - 1} } \right)\)

\(Nu\) :

Local Nusselt number

\(C_{f}\) :

Skin friction

\(Sh\) :

Local Sherwood number

\(Ec\) :

Eckert number

\(Rd\) :

Radiation parameter

\(Nt\) :

Thermophoresis parameter

\(Nb\) :

Brownian motion parameter

\(We\) :

Weissenberg number

\(Pr\) :

Prandtl number

\(M\) :

Magnetic parameter

\(S_{0}^{\prime \prime \prime }\) :

Entropy generation rate \(\left( {JK^{ - 1} } \right)\)

\(Be\) :

Bejan number

\(\rho\) :

Density \(\left( {kgm^{ - 3} } \right)\)

\(\sigma\) :

Electric conductivity \(\left( {kg^{ - 1} m^{ - 3} s^{3} A^{2} } \right)\)

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

\({\Psi }\) :

Stream function

\(\gamma\) :

Thermal relaxation constant

\(\gamma_{1}\) :

Slip parameter

\(\nu\) :

Kinematic viscosity \(\left( {Nsm^{ - 2} } \right)\)

\(w\) :

Condition at the wall

\(\infty\) :

Free stream condition

\(^{\prime}\) :

Differentiation with respect to \(\eta\)

References

  1. Bejan, A.: Second law analysis in heat transfer. Energy 5, 720–732 (1980)

    Google Scholar 

  2. Shit, G.C., Haldar, R., Mandal, S.: Entropy generation on MHD flow and convective heat transfer in a porous medium of exponentially stretching surface saturated by nanofluids. Adv. Powder Technol. 28(6), 1519–1530 (2017)

    Google Scholar 

  3. Khan, N.S., Zuhra, S., Shah, Q.: Entropy generation in two phase model for simulating flow and heat transfer of carbon nanotubes between rotating stretchable disks with cubic autocatalysis chemical reaction. Appl. Nanosci. 9, 1–26 (2019)

    Google Scholar 

  4. Ellahi, R., Alamri, S.Z., Basit, A., Majeed, A.: Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J. Taibah Univ. Sci. 12, 476–482 (2018)

    Google Scholar 

  5. Hussien, A.A., Abdullah, M.Z., Yusop, N.M., Al-Kouz, M.E., Mehrali, M.: Heat transfer and entropy generation abilities of MWCNTs/GNPs hybrid nanofuids in microtubes. Entropy 21, 480 (2019)

    Google Scholar 

  6. Zaib, A., Khan, U., Shah, Z., Kumam, P., Thounthong, P.: Optimization of entropy generation in flow of micropolar mixed convective magnetite (Fe3O4) ferroparticle over a vertical plate. Alex Eng. J. 58(4), 1461–1470 (2019)

    Google Scholar 

  7. Rashid, I., Sagheer, M., Hussain, S.: Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall. Physica A: Stat. Mech. Appl. 536, 122608 (2019)

    MathSciNet  Google Scholar 

  8. Afridi, M.I., Qasim, M.: Entropy generation and heat transfer in boundary layer flow over a thin needle moving in a parallel stream in the presence of nonlinear Rosseland radiation. Int. J. Therm. Sci. 123, 117–128 (2018)

    Google Scholar 

  9. Naz, R., Noor, M., Shah, Z., Sohail, M., Kumam, P., Thounthong, P.: Entropy generation optimization in MHD pseudoplastic fluid comprising motile microorganisms with stratification effect. Alex. Eng. J. 59, 485–496 (2020)

    Google Scholar 

  10. Tlili, I., Khan, M., Salahuddin, T., Tanveer, A., Hussain, A.: Entropy generation minimization and chemical response for Williamson fluid flow with thermal diffusion. Appl. Nanosci. 10, 3123–3131 (2020)

    Google Scholar 

  11. Gangadhar, K., Venkata Ramana, K., Venkata Subba Rao, M., Surekha, P., Chamkha, A.J.: Internal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms. Eur. Phys. J. Plus. 135, 600 (2020)

    Google Scholar 

  12. Gangadhar, K., Bhargavi, D.N., Kannan, T., Venkata Subba Rao, M., Chamkha, A.J.: Transverse MHD flow of a Al2O3-Cu/H2O hybrid nanofluid with active radiation: a novel hybrid model. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6671

    Article  Google Scholar 

  13. Khan, M., Ahmed, J., Rasheed, Z.: Entropy generation analysis for axisymmetric flow of Carreau nanofluid over a radially stretching disk. Appl. Nanosci. 10, 5291–5303 (2020)

    Google Scholar 

  14. Berrehal, H.: Thermodynamics second law analysis for MHD boundary layer flow and heat transfer caused by a moving wedge. J Mech Sci Technol. 33, 2949–2955 (2019)

    Google Scholar 

  15. Farooq, M., Ahmad, S., Javed, M., Anjum, A.: Chemically reactive species in squeezed flow through modified Fourier’s and Fick’s laws. Eur Phys J Plus. 133, 63 (2018)

    Google Scholar 

  16. Nadeem, S., Ahmed, S., Muhammad, N.: Cattaneo-Christov flux in the flow of a viscoelastic fluid in the presence of Newtonian heating. J Mol Liq. 237, 180–184 (2017)

    Google Scholar 

  17. Alamri, S.Z., Khan, A.A., Azeez, M., Ellahi, R.: Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo-Christov heat flux model. Phys Lett A. 383(2–3), 276–281 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. FisUniv Modena. 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  19. Christov, C.I.: On frame indifferent formulation of the Maxwell Cattaneo model of finite - speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Ahmad, S., Nadeem, S., Muhammad, N., Khan, M.N.: Cattaneo-Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. J. Therm. Anal. Calorim. 143, 1187–1199 (2021)

    Google Scholar 

  21. Khan, S.U., Tlili, I., Waqas, H., Imran, M.: Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo-Christov expressions. J. Therm. Anal. Calorim. 143, 1175–1186 (2021)

    Google Scholar 

  22. Hafeez, A., Khan, M., Ahmed, A., Ahmed, J.: Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory. Appl. Math. Mech.-Engl. Ed. 41, 1083–1094 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Muhammad, N., Nadeem, S., Mustafa, T.: Squeezed flow of a nanofluid with Cattaneo-Christov heat and mass fluxes. Results Phys. 7, 862–869 (2017)

    Google Scholar 

  24. Ahmad, S., Nadeem, S.: Flow analysis by Cattaneo-Christov heat fux in the presence of Thomson and Troian slip condition. Appl. Nanosci. 10, 4673–4687 (2020)

    Google Scholar 

  25. Loganathan, K., Rajan, S.: An entropy approach of Williamson nanofluid flow with Joule heating and zero nanoparticle mass flux. J. Therm. Anal. Calorim. 141, 2599–2612 (2020)

    Google Scholar 

  26. Ahmad, L., Ahmed, J., Khan, M., Yasir, M., Alghamdi, M.: Effectiveness of Cattaneo-Christov double diffusion in Sisko fluid flow with variable properties: dual solutions. J. Therm. Anal. Calorim. 143, 3643–3654 (2021)

    Google Scholar 

  27. Abbasbandy, S., Mustafa, M., Hayat, T., Alsaedi, A.: Slip effects on MHD boundary layer flow of Oldriyd-B fluid past a stretching sheet: an analytical solution. J. Braz. Soc. Mech. Sci. Eng. 39, 3389–3397 (2017)

    Google Scholar 

  28. Avramenko, A.A., Dmitrenko, N.P., Shevchuk, I.V.: Heat transfer and hydrodynamics of slip confusor flow under second order boundary conditions. J. Therm. Anal. Calorim. 144, 955–961 (2021)

    Google Scholar 

  29. Mabood, F., Ibrahim, S.M., Kumar, P.V., Lorenzini, G.: Effect of slip and radiation on convective MHD Casson nanofluid flow over a stretching sheet influenced by variable viscosity. J. Engin. Thermophys. 29, 303–315 (2020)

    Google Scholar 

  30. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Expo. 66, 99–105 (1995)

    Google Scholar 

  31. Kuznetsov, A., Nield, D.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci. 49, 243–247 (2010)

    Google Scholar 

  32. Haddad, Z., Abu-Nada, E., Oztop, H.F., Mataoui, A.: Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int J Therm Sci. 57, 152–162 (2012)

    Google Scholar 

  33. Xu, N., Xu, H.: A modified model for isothermal homogeneous and heterogeneous reactions in the boundary-layer flow of a nanofluid. Appl. Math. Mech.-Engl. Ed. 41, 479–490 (2020)

    MathSciNet  Google Scholar 

  34. Ferdows, M., Chapal, S.M., Afify, A.A.: Boundary layer flow and heat transfer of a nanofluid over a permeable unsteady stretching sheet with viscous dissipation. J. Engin. Thermophys. 23, 216–228 (2014)

    Google Scholar 

  35. Iqbal, K., Ahmed, J., Khan, M., Ahmad, L., Alghamdi, M.: Magnetohydrodynamic thin film deposition of Carreau nanofluid over an unsteady stretching surface. Appl. Phys. A 126, 105 (2020)

    Google Scholar 

  36. Abbas, N., Malik, M.Y., Nadeem, S., Alarifi, I.M.: On extended version of Yamada-Ota and Xue models of hybrid nanofluid on moving needle. Eur. Phys. J. Plus 135, 145 (2020)

    Google Scholar 

  37. Arif, U., Nawaz, M., Alharbi, S.O., Saleem, S.: Investigation on the impact of thermal performance of fluid due to hybrid nano-structures. J Therm Anal Calorim. 144, 729–737 (2021)

    Google Scholar 

  38. Shah, Z., Alzahrani, E.O., Alghamdi, W., Ullah, M.Z.: Influences of electrical MHD and Hall current on squeezing nanofluid flow inside rotating porous plates with viscous and joule dissipation effects. J Therm Anal Calorim 140, 1215–1227 (2020)

    Google Scholar 

  39. Hafeez, A., Khan, M., Ahmed, J.: Flow of magnetized Oldroyd-B nanofluid over a rotating disk. Appl Nanosci. 10, 5135–5147 (2020)

    Google Scholar 

  40. Zidan, A.M., McCash, L.B., Akhtar, S., Nadeem, S.: Entropy generation for the blood flow in an artery with multiple stenosis having a catheter. Alex Eng J. 60, 5741–5748 (2021)

    Google Scholar 

  41. Saleem, A., Akhtar, S., Nadeem, S.: Bio-mathematical analysis of electro-osmotically modulated hemodynamic blood flow inside a symmetric and nonsymmetric stenosed artery with joule heating. Int. J. Biomath. (2021). https://doi.org/10.1142/S1793524521500716

    Article  Google Scholar 

  42. McCash, L.B., Akhtar, S., Nadeem, S., Saleem, S.: Entropy analysis of the peristaltic flow of hybrid nanofluid inside an elliptic duct with sinusoidally advancing boundaries. Entropy 23, 732 (2021)

    MathSciNet  Google Scholar 

  43. Rehman, A., Hussain, A., Nadeem, S.: Assisting and opposing stagnation point pseudoplastic nano liquid flow towards a Flexible Riga Sheet: a computational approach. Math. Probl. Eng. 2021, 6610332 (2021)

    MathSciNet  Google Scholar 

  44. Akhtar, S., McCash, L., Nadeem, S., Saleem, S., Issakhov, A.: Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct. Sci. Prog. 104, 1–17 (2021)

    Google Scholar 

  45. Rizwana, R., Hussain, A., Nadeem, S.: Mix convection non-boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. Int. Commun. Heat Mass Transf. 124, 105285 (2021)

    Google Scholar 

  46. Yasin, A., Ullah, N., Saleem, S., Nadeem, S., Al-Zubaidi, A.: Impact of uniform and non-uniform heated rods on free convective flow inside a porous enclosure: finite element analysis. Phys. Scr. 96, 085203 (2021)

    Google Scholar 

  47. Ahmad, S., Nadeem, S., Khan, M.N.: Mixed convection hybridized micropolar nanofluid with triple stratification and Cattaneo-Christov heat flux model. Phys. Scr. 96, 075205 (2021)

    Google Scholar 

  48. Yasin, A., Ullah, N., Nadeem, S., Saleem, S.: Finite element simulation for free convective flow in an adiabatic enclosure: study of Lorentz forces and partially thermal walls. Case Stud. Therm. Eng. 25, 100981 (2021)

    Google Scholar 

  49. Hussain, A., Rehman, A., Nadeem, S., Malik, M.Y., Issakhov, A., Sarwar, Z., Hussain, S.: A combined convection carreau-yasuda nanofluid model over a convective heated surface near a stagnation point: a numerical study. Math. Prob. Eng. 2021, 6665743 (2021)

    MathSciNet  Google Scholar 

  50. Mehryan, S.A.M., Ghalambaz, M., Gargari, L.S., Hajjar, A., Sheremet, M.: Natural convection flow of a suspension containing nano-encapsulated phase change particles in an eccentric annulus. J. Energy Storage. 28, 101236 (2020)

    Google Scholar 

  51. Ghalambaz, M., Grosan, T., Pop, I.: Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. J. Mol. Liq. 293, 11432 (2019)

    Google Scholar 

  52. Hajjar, A., Mehryan, S.A.M., Ghalambaz, M.: Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension. Int. J. Mech. Sci. 166, 105243 (2020)

    Google Scholar 

  53. Khan, M., Hafeez, A.: A review on slip-flow and heat transfer performance of nanofluids from a permeable shrinking surface with thermal radiation: dual solutions. Chem. Eng. Sci. 173, 1–11 (2017)

    Google Scholar 

  54. Merkin, J.H.: Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15, 392 (1994)

    Google Scholar 

  55. Nadeem, S., Hussain, S.T., Lee, C.: Flow of Williamson fluid over a stretching sheet. Braz J. Chem. Eng. 30, 619–625 (2013)

    Google Scholar 

  56. Gorla, R.S.R., Gireesha, B.J.: Dual solutions for stagnation-point flow convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet. Heat Mass Trans. 52, 1153–1162 (2016)

    Google Scholar 

  57. Abbas, Z., Sheikh, M., Hasnain, J., Ayaz, H., Nadeem, A.: Numerical aspects of Thomson and Troian boundary condition in Tiwari Dasnanofluid model with homogeneous-heterogeneous reactions. Phys Scr 94, 11 (2019)

    Google Scholar 

  58. Halim, N.A., Haq, R.U., Noor, N.F.M.: Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface. Meccanica 52, 1527–1539 (2017)

    MathSciNet  Google Scholar 

  59. Akbar, N.S., Ebaid, A., Khan, Z.H.: Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 382, 355–358 (2015)

    Google Scholar 

  60. Bilal, S., Malik, M.Y., Awais, M., Rehman, K.U., Hussain, A., Khan, I.: Numerical investigation on 2D viscoelastic fluid due to exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory. Neural Comput. Appl. 30, 2749–2758 (2018)

    Google Scholar 

  61. Wang, C.Y.: Free convection on a vertical stretching surface. ZAMM J. Appl. Math. Mech/Z Angew Math. Mech. 69, 418–420 (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged and thankful to unanimous reviewers for their valuable comments on the paper.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkata Subba Rao.

Ethics declarations

Conflict of interest

Authors do not have any conflict on the procedure of the Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To calculate the Eq. (24), we need

$$ u = ax\,f^{\prime}(\eta ), $$
(41)
$$ \frac{\partial u}{{\partial x}} = a\,f^{\prime}(\eta ), $$
(42)
$$ \frac{\partial u}{{\partial y}} = ax\,f^{\prime \prime } (\eta )\sqrt {\frac{a}{\upsilon }} , $$
(43)
$$ \frac{{\partial^{2} u}}{{\partial y^{2} }} = \frac{{a^{2} x}}{\upsilon }\,f^{\prime \prime \prime } (\eta ), $$
(44)
$$ v = - \sqrt {a\upsilon } f(\eta ), $$
(45)
$$ \frac{\partial v}{{\partial x}} = - \sqrt {a\upsilon } f^{\prime}(\eta ) \times \frac{\partial \eta }{{\partial x}} = - \sqrt {a\upsilon } f^{\prime}(\eta ) \times 0 = 0, $$
(46)
$$ \frac{\partial v}{{\partial y}} = - \sqrt {a\upsilon } f^{\prime}(\eta ) \times \frac{\partial \eta }{{\partial y}} = - \sqrt {a\upsilon } f^{\prime}(\eta ) \times \sqrt {\frac{a}{\upsilon }} = - a\,f^{\prime}. $$
(47)

Now putting the above expression in Eq. (12), we get

$$ \begin{gathered} ax\,f^{\prime } (\eta ) \times a\,f^{\prime } (\eta ) - \sqrt {a\upsilon } f(\eta ) \times ax\,f^{\prime \prime } (\eta )\sqrt {\frac{a}{\upsilon }} = a^{2} x\,f^{\prime \prime \prime } (\eta ) \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \sqrt 2 \upsilon \beta a^{3} x^{2} \sqrt {\frac{a}{\upsilon }} f^{\prime \prime } (\eta )f^{\prime \prime \prime } (\eta ) - \frac{{\sigma B_{0}^{2} }}{\rho }axf^{\prime } (\eta ) - \frac{\upsilon }{{k_{0} }}axf^{\prime } (\eta ). \hfill \\ \end{gathered} $$
(48)

Then further simplify we get

$$ a^{2} x\,\,(f^{\prime 2} - f\,f^{\prime \prime } ) = a^{2} x\left( {f^{\prime \prime \prime } + \sqrt {\frac{{2a^{3} }}{\upsilon }} \beta xf^{\prime \prime } \,f^{\prime \prime \prime } - \frac{{\sigma B_{0}^{2} }}{a\rho }f^{\prime } - \frac{\upsilon }{{ak_{0} }}f^{\prime } } \right). $$
(49)

Now multiply the equation both sides by (1/a2x), thus

$$ f^{\prime \prime \prime } - f^{\prime 2} + f\,f^{\prime \prime } + \sqrt {\frac{{2a^{3} }}{\upsilon }} \beta xf^{\prime \prime } \,f^{\prime \prime \prime } - \frac{{\sigma B_{0}^{2} }}{a\rho }f^{\prime } - \frac{\upsilon }{{ak_{0} }}f^{\prime } = 0. $$
(50)

Using the thermophysical properties in Eq. (50), it becomes

$$ f^{\prime \prime \prime } - f^{\prime 2} + f\,f^{\prime \prime } + We\,f^{\prime \prime } \,f^{\prime \prime \prime } - M^{2} f^{\prime } - k_{p} f^{\prime } = 0. $$
(51)

Here, \(We = \sqrt {\frac{{2a^{3} }}{\upsilon }} \beta x,\,\,M^{2} = \frac{{\sigma B_{0}^{2} }}{a\rho },\,k_{p} = \frac{\upsilon }{{ak_{0} }},\)

Now to calculate the Eq. (25), we need

$$ \begin{gathered} T = \theta (\eta )\,\Delta T + T_{\infty } ,\,\,\Delta T = T_{w} - T_{\infty } , \hfill \\ C = \phi (\eta )\,C_{\infty } + C_{\infty } , \hfill \\ \end{gathered} $$
(52)
$$ \begin{gathered} \frac{\partial T}{{\partial x}} = \theta^{\prime } \left( \eta \right)\Delta T\frac{\partial \eta }{{\partial x}} = 0, \hfill \\ \frac{\partial T}{{\partial y}} = \theta^{\prime } \left( \eta \right)\Delta T\frac{\partial \eta }{{\partial y}} = \theta^{\prime } \left( \eta \right)\Delta T\sqrt {\frac{a}{\upsilon }} , \hfill \\ \frac{{\partial^{2} T}}{\partial x\partial y} = \theta^{\prime \prime } \left( \eta \right)\Delta T\sqrt {\frac{a}{\upsilon }} \frac{\partial \eta }{{\partial x}} = 0, \hfill \\ \frac{{\partial^{2} T}}{{\partial y^{2} }} = \theta^{\prime \prime } \left( \eta \right)\Delta T\sqrt {\frac{a}{\upsilon }} \frac{\partial \eta }{{\partial y}} = \theta^{\prime \prime } \left( \eta \right)\Delta T\frac{a}{\upsilon }, \hfill \\ \end{gathered} $$
(53)
$$ \frac{\partial C}{{\partial x}} = \phi^{\prime } \left( \eta \right)C_{\infty } \frac{\partial \eta }{{\partial x}} = 0, $$
$$ \frac{\partial C}{{\partial y}} = \phi^{\prime } \left( \eta \right)C_{\infty } \frac{\partial \eta }{{\partial y}} = \phi^{\prime } \left( \eta \right)C_{\infty } \sqrt {\frac{a}{\upsilon }} , $$
(54)
$$ \frac{{\partial^{2} C}}{{\partial y^{2} }} = \phi^{\prime \prime } \left( \eta \right)C_{\infty } \sqrt {\frac{a}{\upsilon }} \frac{\partial \eta }{{\partial y}} = \phi^{\prime \prime } \left( \eta \right)C_{\infty } \frac{a}{\upsilon }, $$

LHS term of Eq. (22), we have

$$ \begin{aligned}& u\frac{\partial T}{{\partial x}} + v\frac{\partial T}{{\partial y}} + \lambda_{T} \left[ \begin{gathered} u\frac{\partial u}{{\partial x}}\frac{\partial T}{{\partial x}} + v\frac{\partial v}{{\partial y}}\frac{\partial T}{{\partial y}} + 2uv\frac{{\partial^{2} T}}{\partial x\partial y} \hfill \\ + u\frac{\partial v}{{\partial x}}\frac{\partial T}{{\partial y}} + v\frac{\partial u}{{\partial y}}\frac{\partial T}{{\partial x}} + u^{2} \frac{{\partial^{2} T}}{{\partial x^{2} }} + v^{2} \frac{{\partial^{2} T}}{{\partial y^{2} }} \hfill \\ \end{gathered} \right] \\ & = ax\,f^{\prime } \times 0 - \sqrt {a\upsilon } f \times \theta^{\prime } \Delta T\sqrt {\frac{a}{\upsilon }}\\ & + \lambda_{T} \left[ \begin{gathered} axf^{\prime } \times af^{\prime } \times 0 - \sqrt {a\upsilon } f \times - af^{\prime } \times \theta^{\prime } \Delta T\sqrt {\frac{a}{\upsilon }} - 2axf^{\prime } \times \sqrt {a\upsilon } f \times 0 \hfill \\ + axf^{\prime } \times 0 \times \theta^{\prime } \Delta T\sqrt {\frac{a}{\upsilon }} - \sqrt {a\upsilon } f \times axf^{\prime \prime } \sqrt {\frac{a}{\upsilon }} \times 0 + a\upsilon f^{2} \times \theta^{\prime \prime } \Delta T\frac{a}{\upsilon } \hfill \\ \end{gathered} \right] \hfill \\ & = - a(\Delta T)f\,\theta^{\prime } + \lambda_{T} \left[ {a^{2} f\,f^{\prime } \theta^{\prime } \Delta T + a^{2} f^{2} \theta^{\prime \prime } \Delta T} \right], \hfill \\ \end{aligned} $$
(55)

Multiply with \(\frac{1}{a\Delta T}\)

$$ - f\,\theta^{\prime } + \lambda_{T} a\left[ {f\,f^{\prime } \theta^{\prime } + f^{2} \theta^{\prime \prime } } \right] = - f\,\theta^{\prime } + \gamma \left[ {f\,f^{\prime } \theta^{\prime } + f^{2} \theta^{\prime \prime } } \right] $$
(56)

Here \(\gamma = \lambda_{T} a\).

Right hand side term of Eq. (22), we have

$$ \begin{gathered} \frac{k}{{\rho c_{p} }}\frac{{\partial^{2} T}}{{\partial y^{2} }} - \frac{{16\sigma *T_{\infty }^{3} }}{{3\rho c_{p} k*}}\frac{{\partial^{2} T}}{{\partial y^{2} }} + \frac{{ku_{w} }}{{x\rho c_{p} \upsilon }}\left[ {A(T_{w} - T_{\infty } )exp\left( { - \sqrt {\frac{a}{\upsilon }} y} \right) + (T - T_{\infty } )B} \right] \hfill \\ + \tau \left[ {D_{B} \frac{\partial C}{{\partial y}}\frac{\partial T}{{\partial y}} + \frac{{D_{T} }}{{T_{\infty } }}\left( {\frac{\partial T}{{\partial y}}} \right)^{2} } \right] + \frac{{\sigma B_{0}^{2} }}{{\rho c_{p} }}u^{2} + \frac{\mu }{{\rho c_{p} }}\left( {\frac{\partial u}{{\partial y}}} \right)^{2} + \frac{\mu }{{\rho c_{p} }}\beta \left( {\frac{\partial u}{{\partial y}}} \right)^{3} \, \hfill \\ = \frac{k}{{\rho c_{p} }}\left( {\theta^{\prime \prime } \Delta T\frac{a}{\upsilon }} \right) - \frac{{16\sigma *T_{\infty }^{3} }}{{3\rho c_{p} k*}}\left( {\theta^{\prime \prime } \Delta T\frac{a}{\upsilon }} \right) + \frac{kax}{{x\rho c_{p} \upsilon }}\left[ {A\,\Delta Texp\left( { - \eta } \right) + \theta \,\Delta T\,B} \right] \hfill \\ + \tau \left[ {D_{B} \phi^{\prime } \left( \eta \right)C_{\infty } \sqrt {\frac{a}{\upsilon }} \times \theta^{\prime } \left( \eta \right)\Delta T\sqrt {\frac{a}{\upsilon }} + \frac{{D_{T} }}{{T_{\infty } }}\theta^{\prime 2} \left( \eta \right)\Delta T^{2} \frac{a}{\upsilon }} \right] \hfill \\ + \frac{{a^{3} x^{2} }}{{c_{p} }}\left[ {\frac{{\sigma B_{0}^{2} }}{a\rho }f^{\prime 2} + \frac{\mu }{\rho \upsilon }f^{\prime \prime 2} + \frac{\mu ax}{{\rho \upsilon }}\beta \sqrt {\frac{a}{\upsilon }} f^{\prime \prime 3} } \right],\,\,\,\,\,\,\, \hfill \\ \end{gathered} $$
(57)

Multiply with \(\frac{1}{a\Delta T}\)

$$ \begin{gathered} \frac{k}{{\upsilon \rho c_{p} }}\left( {\theta^{\prime \prime } } \right) - \frac{k}{{\upsilon \rho c_{p} }}\frac{{16\sigma *T_{\infty }^{3} }}{3kk*}\left( {\theta^{\prime \prime } } \right) + \frac{k}{{\rho c_{p} \upsilon }}\left[ {A\,exp\left( { - \eta } \right) + \theta \,\,B} \right] \hfill \\ + \frac{{\tau D_{B} }}{\upsilon }C_{\infty } \theta^{\prime } \phi^{\prime } + \frac{{\tau D_{T} }}{{T_{\infty } \upsilon }}\Delta T\theta^{\prime 2} + \frac{{u_{w}^{2} }}{{c_{p} \Delta T}}\left[ {\frac{{\sigma B_{0}^{2} }}{a\rho }f^{\prime 2} + f^{\prime \prime 2} + \frac{1}{\sqrt 2 }\beta x\sqrt {\frac{{2a^{3} }}{\upsilon }} f^{\prime \prime 3} } \right],\,\,\,\,\, \hfill \\ \end{gathered} $$
(58)

Simply this we get

$$ \begin{gathered} \frac{1}{\Pr }\theta^{\prime \prime } - \frac{1}{\Pr }\frac{4}{3}Rd\theta^{\prime \prime } + Nb\,\theta^{\prime } \phi^{\prime } + Nt\,\theta^{\prime 2} \hfill \\ + \frac{1}{\Pr }\left[ {A\,exp\left( { - \eta } \right) + \theta \,\,B} \right] + Ec\left[ {M\,f^{\prime 2} + f^{\prime \prime 2} + \frac{we}{{\sqrt 2 }}f^{\prime \prime 3} } \right],\,\,\,\,\, \hfill \\ \end{gathered} $$
(59)

where \(\Pr = \frac{{\mu c_{p} }}{k},Rd = \frac{{4\sigma *T_{\infty }^{3} }}{kk*},Nb = \frac{{\tau D_{B} }}{\upsilon }C_{\infty } ,Nt = \frac{{\tau D_{T} }}{{T_{\infty } \upsilon }}\Delta T,Ec = \frac{{u_{w}^{2} }}{{c_{p} \Delta T}},\)

Finally, to calculate Eq. (26), we have

$$ \begin{gathered} u\frac{\partial C}{{\partial x}} + v\frac{\partial C}{{\partial y}} = D_{B} \frac{{\partial^{2} C}}{{\partial y^{2} }} + \frac{{D_{T} }}{{T_{\infty } }}\frac{{\partial^{2} T}}{{\partial y^{2} }}, \hfill \\ ax\,f^{\prime } \times 0 - \sqrt {a\upsilon } f \times \phi^{\prime } C_{\infty } \sqrt {\frac{a}{\upsilon }} = D_{B} \phi^{\prime \prime } C_{\infty } \frac{a}{\upsilon } + \frac{{D_{T} }}{{T_{\infty } }}\theta^{\prime \prime } \Delta T\frac{a}{\upsilon }, \hfill \\ - aC_{\infty } f\phi^{\prime } = D_{B} \frac{{aC_{\infty } }}{\upsilon }\phi^{\prime \prime } + \frac{{D_{T} }}{{T_{\infty } }}\frac{a\Delta T}{\upsilon }\theta^{\prime \prime } , \hfill \\ \end{gathered} $$
(60)

Multiply with \(\frac{1}{{aC_{\infty } }}\)

$$ - f\phi^{\prime } = \frac{{D_{B} }}{\upsilon }\left( {\phi^{\prime \prime } + \frac{{D_{T} }}{{T_{\infty } }}\frac{\Delta T}{{D_{B} C_{\infty } }}\theta^{\prime \prime } } \right), $$
(61)
$$ - {\text{PrLe}} f\phi^{\prime } = \phi^{\prime \prime } + \frac{Nt}{{Nb}}\theta^{\prime \prime } , $$
(62)

where \(Le = \frac{\alpha }{{D_{B} }}\).

Boundary conditions

$$\begin{aligned} & u = u_{w} + u_{l} = ax + \gamma *\left( {1 - \xi *\frac{\partial u}{{\partial y}}} \right)^{1/2} \frac{\partial u}{{\partial y}},\,\,v = 0,\\ & T = T_{w} ,\,\,D_{B} \frac{\partial C}{{\partial y}} + \frac{{D_{T} }}{{T_{\infty } }}\frac{\partial T}{{\partial y}} = 0,\quad {\text{at y}} = 0 \\ \end{aligned}$$
(63)
$$ \begin{aligned} ax\,f^{\prime } &= ax + \gamma *\left( {1 - \xi *ax\,f^{{\prime \prime }} \sqrt {\frac{a}{\upsilon }} } \right)^{{1/2}} ax\,f^{{\prime \prime }} \sqrt {\frac{a}{\upsilon }} , \\ &\quad - \sqrt {a\upsilon } f = 0,\,\,\theta \,(T_{w} - T_{\infty } ) + T_{\infty } = T_{w} ,\,\,D_{B} \phi ^{\prime } C_{\infty } \sqrt {\frac{a}{\upsilon }} + \frac{{D_{T} }}{{T_{\infty } }}\theta ^{\prime } \Delta T\sqrt {\frac{a}{\upsilon }} = 0, \\&\Rightarrow f^{\prime } = 1 + \gamma *\sqrt {\frac{a}{\upsilon }} \left( {1 - \xi *u_{w} \,\sqrt {\frac{a}{\upsilon }} f^{{\prime \prime }} } \right)^{{1/2}} \,f^{{\prime \prime }} ,\,\,f = 0,\,\,\theta (T_{w} - T_{\infty } ) \\&= T_{w} - T_{\infty } ,\,\,\,D_{B} C_{\infty } \phi ^{\prime } + \frac{{D_{T} }}{{T_{\infty } }}\theta ^{\prime } \Delta T = 0, \\ \\& \Rightarrow f^{\prime } = 1 + \gamma _{1} \left( {1 - L_{1} f^{{\prime \prime }} } \right)^{{1/2}} \,f^{{\prime \prime }} ,\,\,f = 0,\,\,\theta = 1,\,\,\,\frac{{\tau D_{B} C_{\infty } }}{\upsilon }\phi ^{\prime } + \frac{{\tau D_{T} }}{{T_{\infty } \upsilon }}\Delta T\theta ^{\prime } = 0, \end{aligned} $$
(64)

at y = 0

$$ f^{\prime } = f^{\prime } = 1 + \gamma_{1} \left( {1 - L_{1} f^{\prime \prime } } \right)^{1/2} \,f^{\prime \prime } ,\,\,f = 0,\,\,\theta = 1,\,\,\,Nb\,\phi^{\prime } + Nt\theta^{\prime } = 0, $$
(65)

where \(\gamma_{1} = \gamma *\sqrt {\frac{a}{\upsilon }} ,\,\,L_{1} = \xi *u_{w} \sqrt {\frac{a}{\upsilon }} .\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Seshakumari, P.M., Venkata Subba Rao, M. et al. MHD Flow Analysis of a Williamson Nanofluid due to Thomson and Troian Slip Condition. Int. J. Appl. Comput. Math 8, 6 (2022). https://doi.org/10.1007/s40819-021-01204-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01204-1

Keywords

Navigation