Skip to main content
Log in

Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The major aim of this paper is to develop four new generalized integral formulas. Out of these four formulas, two includes generalized Bessel-Maitland function \( J_{v,\gamma ,\delta }^{\mu ,q,p} \left[ z \right] \) (which are explicited in the form of generalized hypergeometric function \( p^{F} q\)) and other two includes the product of generalized Bessel-Maitland function and generalized M-Series \(M_{r,s;t,u}^{\alpha ,\beta }\) (which are explicited in the form of Srivastava and Daoust multivariable hypergeometric function \(F_{{l:m_{1} ; \ldots m_{r} }}^{{p:q_{1} ; \ldots q_{r} }}\)). Further some other interesting results as particular cases of our main outcomes are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not Applicable.

References

  1. Rainville, E.D.: Special functions. Chelsea Publication Company, Bronx, New York (1971)

    MATH  Google Scholar 

  2. Saxena, R.K., Mathai, A.M.: The H function with applications in statistics and other disciplines. Willey Eastern, New Delhi and Halsted Press, New York (1978)

    MATH  Google Scholar 

  3. Arshad, M., Mubeen, S., Nisar, K.S., Rahman, G.: Extended wright-bessel function and its properties. Commun. Korean Math. Soc. 33(1), 143–155 (2018). https://doi.org/10.4134/CKMS.c170039

    Article  MathSciNet  MATH  Google Scholar 

  4. Naheed, S., Mubeen, S., Rahman, G., Alharthi, M.R., Nisar, K.S.: Some new inequalities for the generalized Fox-Wright functions. AIMS Math. 6(6), 5452–5464 (2021)

    MathSciNet  Google Scholar 

  5. Khan, W.A., Nisar, K.S., Choi, J.: An integral formula of the mellin transform type involving the extended Wright-Bessel function. Far East J. Math. Sci. (FJMS) 102(11), 2903–2912 (2017)

    Google Scholar 

  6. Rahman, G., Nisar, K.S., Khan, S.U., Baleanu, D., Vijayakumar, V.: On the weighted fractional integral inequalities for Chebyshev functionals. Adv. Differ. Equ. (2021). https://doi.org/10.1186/s13662-020-03183-x

    Article  MathSciNet  Google Scholar 

  7. Mubeen, S., Ali, R.S., Nayab, I., Rahman, G., Nisar, K.S., Baleanu, D.: Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Math 6(4), 3352–3377 (2021)

    MathSciNet  Google Scholar 

  8. Nisar, K.S., Rahman, G., Baleanu, D., Samraiz, M., Iqbal, S.: On the weighted fractional Pólya-Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-03075-0

    Article  Google Scholar 

  9. Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alex. Eng. J. 57(3), 1937–1942 (2018)

    Google Scholar 

  10. Srivastava, H.M., Jain, S., Agarwal, P.: Generating functions for the generalized Gauss hypergeometric functions. Appl. Math. Comput. 247, 348–352 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 1, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Bhargava, A., Sharma, S.S., Mathur, R.: Some integrals involving Aleph-Function and wright’s generalized hyper geometric function. ISST J. Math. Comput. Syst. 8(1), 26–32 (2017)

    Google Scholar 

  13. Bhargava, A., Srivastava, A., Mukherjee, R.: Some finite integrals involving Srivastava’s polynomials and the Aleph function. Kyungpook Math. J. 56, 465–471 (2016). https://doi.org/10.5666/KMJ.2016.56.2.465

    Article  MathSciNet  MATH  Google Scholar 

  14. Bhargava, A., Srivastava, A., Mukherjee, R.: Some integrals involving I-function and wright’s Generalized Hypergeometric function. Casp. J. Appl. Math. Ecology Econ. 3(1), 3–14 (2015)

    Google Scholar 

  15. Bhargava, A., Srivastava, A., Mukherjee, R.: On a general class of multiple Eulerian integrals. Int. J. Latest Technol. Eng. Manag. Appl. Sci. (IJLTEMAS) 3(8), 57–64 (2014)

    Google Scholar 

  16. Bhargava, A., Srivastava, A., Mukherjee, R.: Integrals pertaining to I-functions. Int. J. Math. Stat. Sci. (IJMSS) 3(5), 1–8 (2014)

    Google Scholar 

  17. Bhargava, A., Agarwal, G., Sharma, S.S.: On fractional integral formulas involving Srivastava’s polynomials and multivariable I-function. Math. Eng. Sci. Aerosp (MESA) 11(2), 301–308 (2020)

    Google Scholar 

  18. Choi, J., Agarwal, P.: Certain unified integrals associated with Bessel functions. Bound. Value Probl. 2013, 95 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Choi, J., Agarwal, P.: Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 35(4), 667–677 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Agarwal, P., Baleanu, D., Purohit, S.D.: Certain fractional integral formulas involving the product of generalized Bessel functions. Scientific World J. 2013, 1–9 (2013)

    Google Scholar 

  21. Jain, S., Agarwal, P.: A new class of integral relation involving general class of polynomials and I-function. Walailak J. Sci. Tech. 12(11), 1009–1018 (2015)

    Google Scholar 

  22. Khan, N.U., Kashmin, T.: Some integrals for the generalized Bessel-Maitland functions. Electron. J. Math. Anal. Appl. 4(2), 139–149 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Manaria, N., Baleanu, D., Purohit, S.D.: Integral formulas involving product of general class of polynomials and generalized Bessel function. Sohag J. Math. 3(2), 77–81 (2016)

    Google Scholar 

  24. Manaria, N., Purohit, S.D., Parmar, R.K.: On a new class of integrals involving generalized Mittag-Leffler function. Surv. Math. Appl. 11, 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Nisar, K.S., Parmar, R.K., Abusufian, A.H.: Certain new unified integrals with the generalized k-Bessel function. Far East J. Math. Sci. 100, 1533–1544 (2016)

    MATH  Google Scholar 

  26. Nisar, K.S., Suthar, D.L., Purohit, S.D., Aldhaifallah, M.: Some unified integral associated with the generalized Struve function. Proc. Jangjeon Math. Soc. 20(2), 261–267 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Parmar, R.K., Purohit, S.D.: On a new class of integrals involving generalized hyper geometric function. Int. Bull. Math. Res. 3(2), 24–27 (2016)

    MATH  Google Scholar 

  28. Rakha, M.A., Rathie, A.K., Chaudhary, M.P., Ali, S.: On a new class of integrals involving hypergeometric function. J. Inequal. Spec. Funct. 3(1), 10–27 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Suthar, D.L., Haile, H.: Integrals involving generalized Bessel-Maitland function. J. Sci. Arts 37(4), 357–362 (2016)

    MathSciNet  Google Scholar 

  30. Sharma, M., Jain, R.: A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 12(4), 449–452 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Marichev, O.I.: Handbook of integral transform and higher transcendental functions. Theory and algorithm tables, Ellis Horwood, Chichester. John Wiley and Sons, New York (1983)

    Google Scholar 

  32. Singh, M., Khan, M.A., Khan, A.H.: On some properties of a generalization of Bessel-Maitland function. Int. J. Math. Trends Tech. 14(1), 46–54 (2014)

    Google Scholar 

  33. Ghayasuddin, M., Khan, W.A.: A new extension of Bessel-Maitland function and its properties. Mathematici Vesnik 70(4), 292–302 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Fox, C.: The asymptotic expansion of generalized hyper geometric functions. Proc. London Math. Soc 27(2), 389–400 (1928). https://doi.org/10.1112/plms/s2-27.1.389

    Article  MathSciNet  MATH  Google Scholar 

  35. Wright, E.M.: The asymptotic expansion of the generalized hyper geometric function II. Proc. London Math. Soc 46(2), 389–408 (1940). https://doi.org/10.1112/plms/s2-46.1.389

    Article  MathSciNet  MATH  Google Scholar 

  36. Wright, E.M.: The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. Roy. Soc. Lond. A 238, 423–451 (1940)

    MathSciNet  MATH  Google Scholar 

  37. Wright, E.M.: The asymptotic expansion of the generalized hyper geometric functions. J. London Math. Soc 10, 286–293 (1935)

    Google Scholar 

  38. Srivastava, H.M., Choi, J.: Zeta and q-Zeta functions and associated series and integrals. Elsevier Science Publishers, Amsterdam, London and New York (2012)

    MATH  Google Scholar 

  39. Salim, T.O., Faraj, W.A.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Frac. Calc. Appl. 3(5), 1–13 (2012)

    MATH  Google Scholar 

  40. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties J. . Math. Anal. Appl. 336, 797–811 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  42. Wiman, A.: Uber den fundamental Satz in der theorie der Funktionen Eα(x). Acta Math. 29, 191–201 (1905)

    MathSciNet  MATH  Google Scholar 

  43. Mittag-Leffler, G.M.: Surla nouvelle function Eα(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)

    Google Scholar 

  44. Srivastava, H.M., Manocha, H.L.: A Treatise on generating functions. Halsted Press (Ellis Horwood Limited Chichester), John Wiley and Sons, New York (1984)

    MATH  Google Scholar 

  45. Lavoie, J.L., Trottier, G.: On the sum of certain Appell’s series. Ganita 20(1), 31–32 (1969)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

There is no funding given to this research work by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Bhargava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R.K., Bhargava, A. & Rizwanullah, M. Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series. Int. J. Appl. Comput. Math 8, 14 (2022). https://doi.org/10.1007/s40819-021-01202-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01202-3

Keywords

Mathematics Subject Classification

Navigation