Abstract
The major aim of this paper is to develop four new generalized integral formulas. Out of these four formulas, two includes generalized Bessel-Maitland function \( J_{v,\gamma ,\delta }^{\mu ,q,p} \left[ z \right] \) (which are explicited in the form of generalized hypergeometric function \( p^{F} q\)) and other two includes the product of generalized Bessel-Maitland function and generalized M-Series \(M_{r,s;t,u}^{\alpha ,\beta }\) (which are explicited in the form of Srivastava and Daoust multivariable hypergeometric function \(F_{{l:m_{1} ; \ldots m_{r} }}^{{p:q_{1} ; \ldots q_{r} }}\)). Further some other interesting results as particular cases of our main outcomes are also mentioned.
Similar content being viewed by others
Data Availability Statement
Not Applicable.
References
Rainville, E.D.: Special functions. Chelsea Publication Company, Bronx, New York (1971)
Saxena, R.K., Mathai, A.M.: The H function with applications in statistics and other disciplines. Willey Eastern, New Delhi and Halsted Press, New York (1978)
Arshad, M., Mubeen, S., Nisar, K.S., Rahman, G.: Extended wright-bessel function and its properties. Commun. Korean Math. Soc. 33(1), 143–155 (2018). https://doi.org/10.4134/CKMS.c170039
Naheed, S., Mubeen, S., Rahman, G., Alharthi, M.R., Nisar, K.S.: Some new inequalities for the generalized Fox-Wright functions. AIMS Math. 6(6), 5452–5464 (2021)
Khan, W.A., Nisar, K.S., Choi, J.: An integral formula of the mellin transform type involving the extended Wright-Bessel function. Far East J. Math. Sci. (FJMS) 102(11), 2903–2912 (2017)
Rahman, G., Nisar, K.S., Khan, S.U., Baleanu, D., Vijayakumar, V.: On the weighted fractional integral inequalities for Chebyshev functionals. Adv. Differ. Equ. (2021). https://doi.org/10.1186/s13662-020-03183-x
Mubeen, S., Ali, R.S., Nayab, I., Rahman, G., Nisar, K.S., Baleanu, D.: Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Math 6(4), 3352–3377 (2021)
Nisar, K.S., Rahman, G., Baleanu, D., Samraiz, M., Iqbal, S.: On the weighted fractional Pólya-Szegö and Chebyshev-types integral inequalities concerning another function. Adv. Differ. Equ. (2020). https://doi.org/10.1186/s13662-020-03075-0
Agarwal, P., Ntouyas, S.K., Jain, S., Chand, M., Singh, G.: Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform. Alex. Eng. J. 57(3), 1937–1942 (2018)
Srivastava, H.M., Jain, S., Agarwal, P.: Generating functions for the generalized Gauss hypergeometric functions. Appl. Math. Comput. 247, 348–352 (2014)
Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 1, 1–13 (2018)
Bhargava, A., Sharma, S.S., Mathur, R.: Some integrals involving Aleph-Function and wright’s generalized hyper geometric function. ISST J. Math. Comput. Syst. 8(1), 26–32 (2017)
Bhargava, A., Srivastava, A., Mukherjee, R.: Some finite integrals involving Srivastava’s polynomials and the Aleph function. Kyungpook Math. J. 56, 465–471 (2016). https://doi.org/10.5666/KMJ.2016.56.2.465
Bhargava, A., Srivastava, A., Mukherjee, R.: Some integrals involving I-function and wright’s Generalized Hypergeometric function. Casp. J. Appl. Math. Ecology Econ. 3(1), 3–14 (2015)
Bhargava, A., Srivastava, A., Mukherjee, R.: On a general class of multiple Eulerian integrals. Int. J. Latest Technol. Eng. Manag. Appl. Sci. (IJLTEMAS) 3(8), 57–64 (2014)
Bhargava, A., Srivastava, A., Mukherjee, R.: Integrals pertaining to I-functions. Int. J. Math. Stat. Sci. (IJMSS) 3(5), 1–8 (2014)
Bhargava, A., Agarwal, G., Sharma, S.S.: On fractional integral formulas involving Srivastava’s polynomials and multivariable I-function. Math. Eng. Sci. Aerosp (MESA) 11(2), 301–308 (2020)
Choi, J., Agarwal, P.: Certain unified integrals associated with Bessel functions. Bound. Value Probl. 2013, 95 (2013)
Choi, J., Agarwal, P.: Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 35(4), 667–677 (2013)
Agarwal, P., Baleanu, D., Purohit, S.D.: Certain fractional integral formulas involving the product of generalized Bessel functions. Scientific World J. 2013, 1–9 (2013)
Jain, S., Agarwal, P.: A new class of integral relation involving general class of polynomials and I-function. Walailak J. Sci. Tech. 12(11), 1009–1018 (2015)
Khan, N.U., Kashmin, T.: Some integrals for the generalized Bessel-Maitland functions. Electron. J. Math. Anal. Appl. 4(2), 139–149 (2016)
Manaria, N., Baleanu, D., Purohit, S.D.: Integral formulas involving product of general class of polynomials and generalized Bessel function. Sohag J. Math. 3(2), 77–81 (2016)
Manaria, N., Purohit, S.D., Parmar, R.K.: On a new class of integrals involving generalized Mittag-Leffler function. Surv. Math. Appl. 11, 1–9 (2016)
Nisar, K.S., Parmar, R.K., Abusufian, A.H.: Certain new unified integrals with the generalized k-Bessel function. Far East J. Math. Sci. 100, 1533–1544 (2016)
Nisar, K.S., Suthar, D.L., Purohit, S.D., Aldhaifallah, M.: Some unified integral associated with the generalized Struve function. Proc. Jangjeon Math. Soc. 20(2), 261–267 (2017)
Parmar, R.K., Purohit, S.D.: On a new class of integrals involving generalized hyper geometric function. Int. Bull. Math. Res. 3(2), 24–27 (2016)
Rakha, M.A., Rathie, A.K., Chaudhary, M.P., Ali, S.: On a new class of integrals involving hypergeometric function. J. Inequal. Spec. Funct. 3(1), 10–27 (2012)
Suthar, D.L., Haile, H.: Integrals involving generalized Bessel-Maitland function. J. Sci. Arts 37(4), 357–362 (2016)
Sharma, M., Jain, R.: A note on a generalized M-series as a special function of fractional calculus. Fract. Calc. Appl. Anal. 12(4), 449–452 (2009)
Marichev, O.I.: Handbook of integral transform and higher transcendental functions. Theory and algorithm tables, Ellis Horwood, Chichester. John Wiley and Sons, New York (1983)
Singh, M., Khan, M.A., Khan, A.H.: On some properties of a generalization of Bessel-Maitland function. Int. J. Math. Trends Tech. 14(1), 46–54 (2014)
Ghayasuddin, M., Khan, W.A.: A new extension of Bessel-Maitland function and its properties. Mathematici Vesnik 70(4), 292–302 (2018)
Fox, C.: The asymptotic expansion of generalized hyper geometric functions. Proc. London Math. Soc 27(2), 389–400 (1928). https://doi.org/10.1112/plms/s2-27.1.389
Wright, E.M.: The asymptotic expansion of the generalized hyper geometric function II. Proc. London Math. Soc 46(2), 389–408 (1940). https://doi.org/10.1112/plms/s2-46.1.389
Wright, E.M.: The asymptotic expansion of integral functions defined by Taylor series. Philos. Trans. Roy. Soc. Lond. A 238, 423–451 (1940)
Wright, E.M.: The asymptotic expansion of the generalized hyper geometric functions. J. London Math. Soc 10, 286–293 (1935)
Srivastava, H.M., Choi, J.: Zeta and q-Zeta functions and associated series and integrals. Elsevier Science Publishers, Amsterdam, London and New York (2012)
Salim, T.O., Faraj, W.A.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Frac. Calc. Appl. 3(5), 1–13 (2012)
Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties J. . Math. Anal. Appl. 336, 797–811 (2007)
Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
Wiman, A.: Uber den fundamental Satz in der theorie der Funktionen Eα(x). Acta Math. 29, 191–201 (1905)
Mittag-Leffler, G.M.: Surla nouvelle function Eα(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)
Srivastava, H.M., Manocha, H.L.: A Treatise on generating functions. Halsted Press (Ellis Horwood Limited Chichester), John Wiley and Sons, New York (1984)
Lavoie, J.L., Trottier, G.: On the sum of certain Appell’s series. Ganita 20(1), 31–32 (1969)
Funding
There is no funding given to this research work by any agency.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jain, R.K., Bhargava, A. & Rizwanullah, M. Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series. Int. J. Appl. Comput. Math 8, 14 (2022). https://doi.org/10.1007/s40819-021-01202-3
Accepted:
Published:
DOI: https://doi.org/10.1007/s40819-021-01202-3
Keywords
- Generalized bessel-maitland function
- Generalized mittag–leffler function
- Wright generalized hypergeometric function
- Generalized hypergeometric function
- M-Series
- Srivastava and Daoust multivariable hypergeometric function