Skip to main content
Log in

Numerical Investigation on Electro-Magneto Hydrodynamic Flow of Jeffrey Nanofluid in an Inclined Tapered Arterial Stenosis with Variable Viscosity, Variable Magnetic Field and Periodic Body Force

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present study, electromagnetic effects on blood flow along with iron oxide nanoparticles through tapered arterial stenosis inclined at an angle. The rheology of blood is treated as Jeffrey fluid. The governing equations of the flow under the assumptions of mild stenosis and slight tapering are solved numerically and solutions for velocity, wall shear stress, flow resistance, temperature and concentration profiles are obtained. The influences of variable viscosity and radially variable magnetic field are analyzed in detail. From the obtained numerical results, it is significant that the magnitude of shear stress at the arterial wall enhances with increase in the values of stenotic height, tapering parameter, viscosity parameter, viscosity index and electrokinetic parameter. Also, the values of Grashof numbers, Jeffrey parameter, inclination parameters, Womersley number and Prandtl number help in reducing the magnitudes of wall shear stress and resistive impedance. It is worthy to note that the temperature profile decreases with increase in the values of thermophoresis parameter and the concentration profile enhances with a rise in the values of Brownian motion parameter and Schmidt number. The obtained significant results can be used to control the hydrodynamic factors namely the wall shear stress, velocity and flow impedance which, inturn will be useful in the diagnosis and treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Young, D.F.: Effects of a time-dependent stenosis on flow through a tube. J. Eng. Ind. Trans. ASME 90, 248–254 (1968)

    Google Scholar 

  2. Young, D.F., Tsai, F.Y.: Flow characteristic in models of arterial stenosis–I. Steady flow. J. Biomech. 6, 395–410 (1973)

    Google Scholar 

  3. Ponalagusamy, R.: Blood flow through Stenosed tube. Ph.D Thesis. IIT, Bombay, India (1986)

  4. Young, D.F.: Fluid mechanics of arterial stenosis. J. Biomech. Eng. Trans. ASME 101, 157–175 (1979)

    Google Scholar 

  5. Young, F.D., Tsai, F.Y.: Flow characteristics in model of arterial stenosis steady flow. J. Biomech. 6, 395–410 (1973)

    Google Scholar 

  6. Ponalagusamy, R.: Blood flow through an artery with mild stenosis: a two layered model, different shapes of stenoses and slip velocity at the wall. J. Appl. Sci. 7(7), 1071–1077 (2007)

    Google Scholar 

  7. Bali, R., Awasthi, U.: Effect of a magnetic field on the resistance to blood flow through stenotic artery. Appl. Math. Comput. 188, 1635–1641 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Nadeem, S., Akbar, N.S., Hendi, A.A., Hayat, T.: Power law fluid model for blood flow through a tapered artery with a stenosis. Appl. Math. Comput. 217, 7108–7116 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Mekheimer, K.S., Haroun, M.H., El Kot, M.A.: Induced magnetic field influences on blood flow through an anisotropically tapered elastic artery with overlapping stenosis in an annulus. Can. J. Phys. 89, 201–212 (2011)

    Google Scholar 

  10. Mishra, S., Siddiqui, S.U., Medhavi, A.: Blood flow through a composite stenosis in an artery with permeable wall. Int. J. Appl. Appl. Math. 6, 58–73 (2011)

    MATH  Google Scholar 

  11. Chaturani, P., Ponnalagarsamy, R.: Analysis of pulsatile blood flow through stenosed arteries and its applications to cardiovascular diseases. In: Proceedings of 13th National Conference on Fluid Mechanics and Fluid Power, pp. 463–468 (1984)

  12. El-Shahed, M.: Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl. Math. Comput 138, 479–488 (2003)

    MathSciNet  MATH  Google Scholar 

  13. El-Shehawey, E.F., Eibarbary, E.M.E., Afifi, N.A.S., El-Shahed, M.: Pulsatile flow of blood through a porous medium under periodic body acceleration. Int. J. Theor. Phys. 39, 183–188 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Sharma, M.K., Bansal, K., Bansal, S.: Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field. Korea Aust. Rheol. J. 24, 181–189 (2012)

    Google Scholar 

  15. Liu, G.-T., Wang, X.-J., Ai, B.-Q., Liy, L.-G.: Numerical study of pulsating flow through a tapered artery with stenosis. Chin. J. Phys. 42, 4–I (2004)

    Google Scholar 

  16. Jeffords, J.V., Knisley, M.H.: Concerning the geometric shapes of arteries and arteriols. Angiology 7, 105–136 (1956)

    Google Scholar 

  17. Mandal, P.K.: An unsteady of non-Newtonian blood flow through tapered arteries with a stenosis. Int. J. Nonlinear Mech. 40, 151–164 (2005)

    MATH  Google Scholar 

  18. Mekheimer, K.S., Kot, E.I.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sin. 24, 637–644 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Bali, R., Awasthi, U.: A Casson fluid model for multiple stenosed artery in the presence of magnetic field. Appl. Math. 3(5), 436–441 (2012)

    MathSciNet  Google Scholar 

  20. Akbar, N.S.: Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: applications in crude oil refinement. J. Magn. Magn. Mater. 378, 463–468 (2015)

    Google Scholar 

  21. Majeed, A., Amin, N., Zeeshan, A., Ellahi, R., Sait, S.M., Vafai, K.: Numerical investigation on activation energy of chemically reactive heat transfer unsteady flow with multiple slips. Int. J. Numer. Methods Heat 30(11), 4883–4908 (2020)

    Google Scholar 

  22. Midya, C., Layek, G.C., Gupta, A.S., RoyMahapatra, T.: Magnetohydrodynamic viscous flow separation in a channel with constrictions. ASME. J. Fluid Eng. 125, 952–962 (2003)

    Google Scholar 

  23. Motta, M., Haik, Y., Gandhari, A., Chen, C.J.: High magnetic field effects on human deoxygenated hemoglobin light absorption. Bioelectrochem. Bioenerg. 47, 297–300 (1998)

    Google Scholar 

  24. Rathod, V.P., Tanveer, S.: Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bull. Malays. Math. Sci. Soc. 32(2), 245–259 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Chaturani, P., Palanisamy, V.: Pulsatile flow of power-law fluid model for blood flow under periodic body acceleration. Biorheology 27(5), 747–758 (1990)

    Google Scholar 

  26. Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37, 1451–1467 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Nadeem, S., Ijaz, S.: Theoretical analysis of metallic nanoparticles on blood flow through stenosed artery with permeable walls. Phys. Lett. A 379, 542–554 (2015)

    MATH  Google Scholar 

  28. Nadeem, S., Ijaz, S., Adil Sadiq, M.: Inspiration of induced magnetic field on a blood flow of Prandtl nanofluid model with stenosis. Curr. Nanosci. 10, 753–765 (2014)

    Google Scholar 

  29. Akbar, N.S., Rahman, S.U., Ellahi, R., Nadeem, S.: Nano fluid flow in tapering stenosed arteries with permeable walls. Int. J. Therm. Sci. 85, 54–61 (2014)

    Google Scholar 

  30. Akbar, N.S., Butt, A.W.: Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall. J. Magn. Magn. Mater. 381, 285–291 (2015)

    Google Scholar 

  31. Ijaz, S., Nadeem, S.: Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. Int. J. Therm. Sci. 109, 401–412 (2016)

    Google Scholar 

  32. Ellahi, R., Sait, S.M., Shehzad, N., Mobin, N.: Numerical simulation and mathematical modeling of electro-osmotic Couette–Poiseuille flow of mhd power-law nanofluid with entropy generation. Symmetry 11(8), 1038 (2019)

    Google Scholar 

  33. Tripathi, D., Prakash, J., Tiwari, A.K., Ellahi, R.: Thermal, microrotation, electromagnetic field and nanoparticle shape effects on Cu–CuO/ blood flow in microvascular vessels. Microvasc. Res. 132, 104065 (2020)

    Google Scholar 

  34. Riaz, A., Zeeshan, A., Bhatti, M.M., Ellahi, R.: Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys. A 545, 123788 (2020)

    MathSciNet  Google Scholar 

  35. Ellahi, R., Rahman, S.U., Nadeem, S., Akbar, N.S.: Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl. Nanosci. 4, 919–926 (2014)

    Google Scholar 

  36. Rahman, S.U., Ellahi, R., Nadeem, S., Zia, Q.Z.: Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J. Mol. Liq. 218, 484–493 (2016)

    Google Scholar 

  37. Priyadharshini, S., Ponalagusamy, R.: Computational model on pulsatile flow of blood through a tapered arterial stenosis with radially variable viscosity and magnetic field. Sadhana 42(11), 1901–1913 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Ponalagusamy, R., Priyadharshini, S.: Numerical investigation on two-fluid model (micropolar-Newtonian) for pulsatile flow of blood in a tapered arterial stenosis with radially variable magnetic field and core fluid viscosity. Comput. Appl. Math. 37, 719–743 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Ponalagusamy, R., Manchi, R.: Particle-fluid two phase modelling of electro-magneto hydrodynamic pulsatile flow of Jeffrey fluid in a constricted tube under periodic body acceleration. Eur. J. Mech. B Fluids 81, 76–92 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Mirza, I.A., Abdul hameed, M., Vieru, D., Shafie, S.: Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel. Comput. Methods Progr. Biomed. 137, 149–166 (2016)

    Google Scholar 

  41. Padma, R., Ponalagusamy, R., Tamil Selvi, R.: Mathematical modelling of electro hydrodynamic non-Newtonian fluid flow through tapered arterial stenosis with periodic body acceleration and applied magnetic field. Appl. Math. Comput. 362, 124453 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Ponalagusamy, R., Priyadharshini, S.: Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration. Korea Aust. Rheol. J. 29(4), 303–316 (2017)

    Google Scholar 

  43. Priyadharshini, S., Ponalagusamy, R.: A numerical study on unsteady flow of Herschel–Bulkley nanofluid through an inclined artery with body acceleration and magnetic field. Int. J. Appl. Comput. Math. 5, 6 (2019). https://doi.org/10.1007/s40819-018-0589-4

    Article  MathSciNet  Google Scholar 

  44. Elnaqeeb, T., Shah, N.A., Mekheimer, K.S.: Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity. BionanoScience 9, 245–255 (2019)

    Google Scholar 

  45. Ramesh, K., Rawal, M., Patel, A.: Numerical simulation of radiative MHD Sutterby nanofluid flow through porous medium in the presence of hall currents and electroosmosis. Int. J. Appl. Comput. Math. 7, 30 (2021). https://doi.org/10.1007/s40819-021-00971-1

    Article  MathSciNet  Google Scholar 

  46. Mishra, A., Kumar, M.: Thermal performance of MHD nanofluid flow over a stretching sheet due to viscous dissipation, Joule heating and thermal radiation. Int. J. Appl. Comput. Math. 6, 123 (2020). https://doi.org/10.1007/s40819-020-00869-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Ponalagusamy, R., Tamil Selvi, R.: Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48, 2427–2438 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Tiwari, A., Chauhan, S.S.: Effect of varying viscosity on two-fluid model of pulsatile blood flow through porous blood vessels: a comparative study. Microvasc. Res. 123, 99–110 (2019)

    Google Scholar 

  49. Tiwari, A., Chauhan, S.S.: Effect of varying viscosity on two-layer model of pulsatile flow through blood vessels with porous region near walls. Transp. Porous Med. 129, 721–741 (2019)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the anonymous reviewers for their valuable suggestions in improving the standard of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Priyadharshini.

Ethics declarations

Conflict of interest

The corresponding author Dr. S. Priyadharshini declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Finite Difference Schemes used in the study: The spatial (radial) derivatives are approximated by the central difference and time derivatives with a forward difference (for velocity) as given below:

$$\begin{aligned} \begin{aligned}&\frac{\partial u_f}{\partial t} = \frac{(u_f)_{i,j}^{(s+1)}-(u_f)_{i,j}^{(s)}}{\varDelta t}, \\&\frac{\partial u_f}{\partial \xi } = \frac{(u_f)_{i,j+1}^{(s)}-(u_f)_{i,j-1}^{(s)}}{2\varDelta \xi } = (uffp)_{i,j}^{(s)} (say),\\&\frac{\partial ^2 u_f}{\partial \xi ^2} = \frac{(u_f)_{i,j+1}^{(s)}-2(u_f)_{i,j}^{(s)}+(u_f)_{i,j-1}^{(s)}}{(\varDelta \xi )^2} = (ufsp)_{i,j}^{(s)}\\ \end{aligned} \end{aligned}$$

The formula used in the above study are as follow: Wall shear stress distribution:

$$\begin{aligned} S_{rz} = \left[ \frac{1+K-K(R\xi )^n}{R(1+\lambda _1)}\right] \frac{\partial u_f}{\partial \xi } \end{aligned}$$

Flow Rate:

$$\begin{aligned} Q = 2R^2 \int _0^1{\xi u d\xi } \end{aligned}$$

Flow resistance:

$$\begin{aligned} \lambda = \int _{0}^{L}\frac{-\frac{\partial p}{\partial z}}{Q}dz, \end{aligned}$$

L is the length of the artery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharshini, S. Numerical Investigation on Electro-Magneto Hydrodynamic Flow of Jeffrey Nanofluid in an Inclined Tapered Arterial Stenosis with Variable Viscosity, Variable Magnetic Field and Periodic Body Force. Int. J. Appl. Comput. Math 7, 182 (2021). https://doi.org/10.1007/s40819-021-01123-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01123-1

Keywords

Navigation