Skip to main content
Log in

Influence of Electroosmosis Mechanism and Chemical Reaction on Convective Flow Over an Exponentially Accelerated Plate

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This article is primarily attained to study the electric double layer (EDL) phenomena and chemical reaction effects on unsteady natural convection flow through exponentially accelerated plate. The Poisson Boltzmann equation is used to derive the electroosmosis mechanism. The special effect of Lorentz and Darcy forces are considered in the proposed mathematical model. Governing equations of proposed model is linearized through Debye-Hückel linearization and dimensionless analysis. The system of nonlinear partial differential equations are solved with the help of Laplace transform technique. Further, the Nusselt number and Sherwood number are also derived. The graphical outcomes for velocity, temperature, concentration, Nusselt number and Sherwood number are illustrated with the help of Matlab software. Validation of the present solution is obtained by Laplace transform method which is compared with numerical solution obtained by finite difference with the help of MATLAB code. It is seen that the velocity profile is unequivocally reliance with attractive field and EDL thickness. It is also found that chemical reaction parameter significantly pretends on temperature distribution. This idea can be equipped for being applied in different complex frameworks where the electroosmosis stream can be moved by CPUs gadget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig.14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Uniform magnetic field,

\(C^{\prime}\) :

Concentration,

\(C^{\prime}_{w}\) :

Concentration of the plate,

\(C_{\infty }^{\prime}\) :

Concentration of the fluid far away from the plate,

\(C_{p} \) :

Specific heat at constant pressure,

\(g\) :

Acceleration due to gravity,

\(q_{r}\) :

Radiative heat fluxes in the -direction,

\(D\) :

Mass diffusivity,

\(T^{\prime}\) :

Fluid temperature,

\(T^{\prime}_{w}\) :

Temperature of the plate,

\(T^{\prime}_{\infty }\) :

Temperature of the fluid far away from the plate,

\(t^{\prime}\) :

Time,

\(u^{\prime}\) :

Velocity of the fluid in the direction,

\(y^{\prime}\) :

Coordinate axis normal to the plate,

\(\bar{\kappa }\) :

Thermal conductivity of the fluid,

\(\beta\) :

Volumetric coefficient of thermal expansion,

\(\beta _{1}\) :

Volumetric coefficient of expansion with concentration,

\(u_{0}\) :

Velocity of the plate,

\(\mu\) :

Coefficient of viscosity,

\(\nu\) :

Kinematic viscosity,

\(\rho\) :

Density of the fluid,

\(\sigma\) :

Electric conductivity,

\(\sigma ^{*}\) :

Stefan-Boltzmann constant,

\(a*\) :

Absorption coefficient,

\(\alpha ^{\prime}\) :

Accelerate parameter

\(u\) :

Velocity,

\(\theta\) :

Fluid temperature,

\(C\) :

Concentration,

\(y\) :

Coordinate axis normal to the plate,

\(t\) :

Time,

\(M\) :

Hartmann number,

\(k_{1}\) :

Permeability parameter (porous),

\(k_{2}\) :

Chemical reaction coefficient,

\(Gr\) :

Thermal Grashof number,

\(Gm\) :

Mass Grashof number,

\(Uhs\) :

Helmholtz-Smoluchowski velocity,

\(\kappa\) :

Electroosmosis parameter,

\(\Pr\) :

Prandtl number,

\(R\) :

Thermal radiation,

\(Sc\) :

Schmidt number

\(\alpha\) :

Exponential accelerate parameter.

\(Nu\) :

Nusselt number

\(Sh\) :

Sherwood number

References

  1. Gebhart, B., Pera, L.: The nature of vertical convection flows resulting from the combined buoyancy effects of thermal and mass diffusion. Int. J. Heat Mass transfer. 14, 2025 (1971)

    Article  Google Scholar 

  2. Singh, N.P., Singh, A.K.: MHD free convection and mass transfer flow past a flat plate. The Arabian J. Sci. & Engg. 32, (1A) 93 (2007)

  3. Chamkha, A.J.: Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int. J. Eng. Sci. 24, 217–230 (2004)

    Article  Google Scholar 

  4. Makinde, O.D., Sibanda, P.: MHD mixed-convective flow and heat and mass transfer past a vertical plate in a porous medium with constant wall suction. J. Heat Transfer 130(11), 112602 (2008)

    Article  Google Scholar 

  5. Muthucumaraswamy, R., Ganesan, P.: Heat transfer effects on flow past an impulsively started semi-infinite vertical plate with uniform heat flux. Nucl. Eng. Des. 215, 243–250 (2002)

    Article  Google Scholar 

  6. Chambre, P.L., Young, J.D.: Diffusion of a chemically reactive species in a laminar boundary layer flow. Phys. Fluids 1, 40–54 (1958)

    Article  Google Scholar 

  7. Swetha, R, Viswanatha Reddy G., Vijayakumar Varma S. (2015) Diffusion thermo and radiation effects on MHD flow free convection flow of chemically reacting fluid past an osculating plate embedded in porous medium. procedia engineering. 127,553–560

  8. Pattnaik, J.R., Dash, G.C., Singh, S.: Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature. Ain Shams Eng. J. 8, 67–75 (2017)

    Article  Google Scholar 

  9. Hussain, S.M., Jain, J., Seth, G.S.: Hall effects on MHD natural convection flow with heat and mass transfer of heat absorbing and chemically reacting fluid past a vertical plate with ramped temperature and ramped surface concentration. Bulgan Chem. Commun.. 48(4), 659–670 (2016)

    Google Scholar 

  10. Arifuzzaman, S.M., Khan, M.S., Mehedi, M.F.U., Rana, B.M.J., Ahmmed, S.F.: Chemically reactive and naturally convective high speed MHD fluid flowthrough an oscillatory vertical porous plate with heat and radiationabsorption effect. Engineering Science and Technology an International Journal. 21, 215–228 (2018)

    Article  Google Scholar 

  11. Okuyade, W.I.A., Abbey, T.M., Gima-Laabel, A.T.: Unsteady MHD free convective chemically reacting fluid flow over a vertical plate with thermal radiation Dufour Soret and constant suction effects. Alexandria Eng. J. 57, 3863–3871 (2018)

    Article  Google Scholar 

  12. Seth, G.S., Bhattacharyya A., Tripathi, R..: Effect of Hall current on MHD natural convection heat and mass transfer flow of rotating fluid past a vertical plate with ramped wall temperature. Frontiers in Heat and Mass Transfer (FHMT). 9, 21. (2018)

  13. Bhattacharyya, A., Seth, G.S., Kumar, R.: Modeling of viscoelastic fluid flow past a non-linearly stretching surface with convective heat transfer OHAM analysis. Math. Model. Sci. Comput. Appl. 308, 297–312 (2020)

    MATH  Google Scholar 

  14. Seth, G.S., Bhattacharyya, A., Kumar, R., Mishra, M.K.: Modelling and numerical simulation of hydromagnetic natural convection Casson fluid flow with n-th order chemical reaction and Newtonian heating in porous medium. Journal of Porous Media. 22(9), 1141–1157 (2019)

    Article  Google Scholar 

  15. Vijayaragavan, R., Bharathi, V.: chemical reaction and thermal diffusion effects on unsteady MHD Free convection with exponentially Accelerated inclined plate. J. Emerg. Technol. Innovative Res. 5(7), 554–556 (2018)

    Google Scholar 

  16. Gaffar, S.A., Prasad, V.R., Reddy, E.K.: Magnetohydrodynamic, free convection flow and heat transfer of non-newtonian tangent hyperbolic fluid from horizontal circular cylinder with biot number effects. Int. J. Appl. Comput. Math 3, 721–743 (2017)

    Article  MathSciNet  Google Scholar 

  17. Manjunatha, P.T., Gireesha, B.J., Prasannakumara, B.C.: Effect of radiation on flow and heat transfer of mhd dusty fluid over a stretching cylinder embedded in a porous medium in presence of heat source. Int. J. Appl. Comput. Math 3, 293–310 (2017)

    Article  MathSciNet  Google Scholar 

  18. Vijayaragavan, R., Bharathi, V.: Influence of thermal diffusion effects on unsteady MHD free convection flow past an exponentially accelerated inclined plate with ramped wall temperature. Int. J. Res. Adv. Technol. 6(10), 2617–2632 (2018)

    Google Scholar 

  19. Kataria, R.H., Patel, R.H.: Effect of thermo-diffusion and parabolic motion on MHD second grade fluid flow with ramped wall temperature and ramped surface concentration. Alex. Eng. J. 57, 73–85 (2018)

    Article  Google Scholar 

  20. Vijayaragavan, R., Bharathi, V.: The dufour and thermal diffusion effects of an unsteady magneto hydrodynamic free convection casson fluid flow past an exponentially accelerated plate via laplace transform. Int. J. Res. Eng. Appl. Manag. 05(02), 2454–9150 (2019)

    Google Scholar 

  21. Vijayaragavan, R., Bharathi, V., Prakash, J.: Heat and mass transfer effect of a Magnetohydrodynamic Casson fluid flow in the presence of inclined plate. Indian J. Pure Appl. Phys. 59(1), 28–39 (2021)

    Google Scholar 

  22. Probstein, R.F.: Physicochemical hydrodynamics. Wiley, New York (1994)

    Book  Google Scholar 

  23. Ghosal, S.: Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25, 214–228 (2004)

    Article  Google Scholar 

  24. Conlisk, A.T.: The Debye-Hückel approximation: Its use in describing electroosmotic flow in micro- and nanochannels. Electrophoresis 26, 1896–1912 (2005)

    Article  Google Scholar 

  25. Conlisk, A.T., McFerran, J., Zheng, Z., Hansford, D.: Mass transfer and flow in electrically charged micro- and nanochannels. Anal. Chem. 74, 2139–2150 (2002)

    Article  Google Scholar 

  26. Qiao, R., Aluru, N.R.: Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J. Chem. Phys. 118, 4692–4701 (2003)

    Article  Google Scholar 

  27. Burgreen, D., Nakache, F.R.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)

    Article  Google Scholar 

  28. Rice, C.L., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)

    Article  Google Scholar 

  29. Levine, S., Marriott, J.R., Neale, G., Epstein, N.: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. J Coll. Interface Sci. 52, 136–149 (1975)

    Article  Google Scholar 

  30. Kang, Y., Yang, C., Huang, X.: Electroosmotic flow in a capillary annulus with high zeta potentials. J. Coll Interface Sci. 253, 285–294 (2002)

    Article  Google Scholar 

  31. Das, S., Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Anal. Chim. Acta 559, 15–24 (2006)

    Article  Google Scholar 

  32. Tang, G.H., Li, X.F., He, Y.L., Tao, W.Q.: Electroosmotic flow of non-Newtonian fluid in microchannels. J. Non-Newtonian Fluid Mech. 157, 133–137 (2009)

    Article  Google Scholar 

  33. Afonso, A. M. · Alves, M. A., Pinho, F. T.: Electro-osmotic flow of viscoelastic fluids in microchannels under asymmetric zeta potentials. J Eng Math. 71, 15–30(2011)

  34. Hadian, S., Movahed, S., Mokhtarian, N.: Analytical study of temperature distribution of the electroosmotic flow in slit microchannels. World Appl. Sci. J. 17(5), 666–671 (2012)

    Google Scholar 

  35. Tripathi, D., Sharma, A., Bég, O.A.: Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv. Powder Technol. 29(3), 639–653 (2018)

    Article  Google Scholar 

  36. Prakash, J., Sharma, A., Tripathi, D.: Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 249, 843–855 (2018)

    Article  Google Scholar 

  37. Tripathi, D., Jhorar, R., Bég, O.A., Shaw, S. (2018) Electroosmosis modulated peristaltic biorheological fow through an asymmetric microchannel mathematical model. Meccanica. 53 (8), 2079–2090

  38. Prakash, J., Tripathi, D.: Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis. J. Mol. Liq. 256, 352–371 (2018)

    Article  Google Scholar 

  39. Prakash, J., Siva, E.P., Tripathi, D., Bég, O. A. (2019) Thermal slip and radiative heat transfer effects on electro‐osmotic magneto nanoliquid peristaltic propulsion through a microchannel. Heat Transfer—Asian Research. 48 (7), 2882–2908

  40. Prakash, J., Jhorar R., Tripathi,D., Azese, M.N.: Electroosmotic flow of pseudo plastic nanoliquids via peristaltic pumping. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 41 (2), 61(2019)

  41. Sharma, A., Tripathi, D., Sharma, R.K., Tiwari, A.K.: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Physica A: Statistical Mech. Appl. 535, (2019)

  42. Anum, T., Khan, M., Salahuddin, T., Malik, M.Y.: Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid. Comput. Methods Programs Biomed. 180, 105005 (2019)

  43. Ramesh, K., Prakash, J.: Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutter by nanofluids in a microfluidic vessel. J. Therm. Anal. Calorim. 138(2), 1311–1326 (2019)

    Article  Google Scholar 

  44. Prakash, J., Siva, E.P., Tripathi, D., Bég, O.A. (2019) Thermal slip and radiative heat transfer effects on electro‐osmotic magnetonanoliquid peristaltic propulsion through a microchannel. Heat Transfer—Asian Research. 48 (7), 2882–2908

  45. Narla, V.K., Tripathi, D., Bég, O. A.: Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics. mathematical modeling, Journal of biomechanical engineering. 141 (2), (2019)

  46. Narla, V.K., Tripathi, D., Bég, O.A.: Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Thermal Sci. Eng. Progress. 15, 100424 (2020)

    Article  Google Scholar 

  47. Prakash, J., Tripathi. D., Bég O.A.: Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis. Applied Nanoscience. 1–14 (2020)

  48. Vijayaragavan, R., Bharathi, V., Prakash, J.: A study of electro-osmotic and magneto hybrid nanoliquid flow via radiative heat transfer past an exponentially accelerated plate. Heat transfer. (2021). https://doi.org/10.1002/htj.22110

    Article  Google Scholar 

  49. Vijayaragavan, R., Bharathi, V., Prakash, J.: Impact of electroosmotic flow on a Casson fluid driven by chemical reaction and convective boundary conditions. Heat Transf. (2021). https://doi.org/10.1002/htj.22113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bharathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{aligned} & a_{1} = \frac{R}{{\Pr }},a_{2} = \frac{{\left( {M{\mkern 1mu} k_{1} + 1} \right)}}{{k_{1} }},a_{3} = \frac{{Gm}}{{1 - Sc}},a_{4} = \frac{{Sc{\mkern 1mu} k_{2} - a_{2} }}{{Sc - 1}},a_{5} = \frac{{a_{3} }}{{a_{4} }},a_{6} = \frac{{G_{r} }}{{1 - \Pr }},\\ a_{7} &= \frac{{R - a_{2} }}{{\Pr - 1}},a_{8} = \frac{{a_{6} }}{{a_{7} }}, \hfill \\ a_{9} & = \kappa ^{2} {\mkern 1mu} Uhs,a_{{10}} = \kappa ^{2} - a_{2} ,a_{{11}} = \frac{{a_{9} }}{{a_{{10}} }},a_{{12}} = a_{5} + a_{8} + a_{{11}} ,\eta = \frac{y}{{2\sqrt t }}, \hfill \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayaragavan, R., Bharathi, V. & Prakash, J. Influence of Electroosmosis Mechanism and Chemical Reaction on Convective Flow Over an Exponentially Accelerated Plate. Int. J. Appl. Comput. Math 7, 124 (2021). https://doi.org/10.1007/s40819-021-01063-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01063-w

Keywords

Navigation