Skip to main content
Log in

Vibration Analysis of Orthotropic Functionally Graded Composite Plates in Thermal Environment Using High-Order Shear Deformation Theory: Frequency Suppression by Tuning the In-Plane Forces

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The vibration absorption of rectangular functionally graded cross-ply thick laminates is achieved analytically. The high-order shear deformation theory containing von Kármán strains is employed to study the plate. The laminate structure is assumed to function in a thermal environment subjected to in-plane loadings. Mechanical properties are assumed to vary continuously through the thickness, while each layer of the plate represent an orthotropic composite lamina. The governing equations are derived using Hamilton’s principle and the Levy solution is utilized for the direct implementation of various boundary conditions, including simply support, free, and clamped on the edges of the structure. A particular solution is derived that takes into account the in-plane thermal stresses. Effect of the temperature variation, in-plane loadings, and boundary conditions on the natural frequency of the plate was quantified. Finally, the magnitude of the in-plane forces has been designed in such a way that it can suppress the vibration of the plate under each thermal and boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shen, H.: Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton (2009)

    Google Scholar 

  2. Miyamoto, Y.: Functionally Graded Materials: Design, Processing, and Applications. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  3. Kumar, R., Lal, A., Singh, B.N., Singh, J.: New transverse shear deformation theory for bending analysis of FGM plate under patch load. Compos. Struct. 208, 91–100 (2019)

    Google Scholar 

  4. Vafakhah, Z., Navayi Neya, B.: An exact three dimensional solution for bending of thick rectangular FGM plate. Compos. B Eng. 156, 72–87 (2019)

    Google Scholar 

  5. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R.: An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J. Sandwich Struct. Mater. 21(2), 727–757 (2019)

    Google Scholar 

  6. Song, M., Yang, J., Kitipornchai, S.: Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. B Eng. 134, 106–113 (2018)

    Google Scholar 

  7. Li, X., Li, L., Hu, Y., Ding, Z., Deng, W.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Google Scholar 

  8. Taczała, M., Buczkowski, R., Kleiber, M.: Nonlinear buckling and post-buckling response of stiffened FGM plates in thermal environments. Compos. Part B Eng. 109, 238–247 (2017)

    Google Scholar 

  9. Ozturk, M., Erdogan, F.: Mode I crack problem in an inhomogeneous orthotropic medium. Int. J. Eng. Sci. 35(9), 869–883 (1997)

    MATH  Google Scholar 

  10. Ozturk, M., Erdogan, F.: The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fract. 98(3), 243–261 (1999)

    Google Scholar 

  11. Sourki, R., Ayatollahi, M., Monfared, M.M.: Mode III fracture analysis of a non-homogeneous layer bonded to an elastic half-plane weakened by multiple interface cracks. SCI 25(5), 2570–2581 (2018)

    Google Scholar 

  12. Sourki, R., Ilyaei, S., Bastanfar, M., Monfared, M.M.: Multiple cracks analysis in a FG orthotropic layer with FGPM coating under anti-plane loading. J. Braz. Soc. Mech. Sci. Eng. 40(6), 309 (2018)

    Google Scholar 

  13. Tan, P., Nie, G.J.: Free and forced vibration of variable stiffness composite annular thin plates with elastically restrained edges. Compos. Struct. 149, 398–407 (2016)

    Google Scholar 

  14. Li, R.: Wang B, Li G, Du J, An X, : Analytic free vibration solutions of rectangular thin plates point-supported at a corner. Int. J. Mech. Sci. 96–97, 199–205 (2015)

    Google Scholar 

  15. Thai, H., Choi, D.: A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos. Struct. 101, 332–340 (2013)

    Google Scholar 

  16. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A., Tounsi, A.: Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38(1), 265–275 (2016)

    Google Scholar 

  17. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745 (1984)

    MATH  Google Scholar 

  18. Reddy, J.N., Phan, N.D.: Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. J. Sound Vib. 98(2), 157–170 (1985)

    MATH  Google Scholar 

  19. Reddy, J.N., Khdeir, A.A.: Buckling and vibration of laminated composite plates using various plate theories. AIAA J. 27(12), 1808–1817 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., et al.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B Eng. 44(1), 657–674 (2013)

    Google Scholar 

  21. Gupta, A., Talha, M., Singh, B.N.: Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory. Compos. B Eng. 94, 64–74 (2016)

    Google Scholar 

  22. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)

    Google Scholar 

  23. Cheng, Z.Q., Batra, R.C.: Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. B Eng. 31(2), 97–106 (2000)

    Google Scholar 

  24. Yang, J., Shen, H.S.: Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. J. Sound Vib. 255(3), 579–602 (2002)

    Google Scholar 

  25. Vel, S.S., Batra, R.C.: Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int J Solids Struct. 40(25), 7181–7196 (2003)

    MATH  Google Scholar 

  26. Vel, S.S., Batra, R.C.: Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. AIAA J. 40(7), 1421–1433 (2002)

    Google Scholar 

  27. Pandey, S., Pandey, S., Pradyumna, S.: Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. Eur. J. Mech. A Solids 51, 55–66 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Ying, J., Lü, C., Lim, C.W.: 3D thermoelasticity solutions for functionally graded thick plates. J. Zhejiang Univ. Sci. A 10(3), 327–336 (2009)

    MATH  Google Scholar 

  29. Selim, B.A., Selim, B.A., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT reinforced functionally graded composite plates in a thermal environment based on Reddy’s higher-order shear deformation theory. Compos. Struct. 156, 276–290 (2016)

    Google Scholar 

  30. Yin, S., Yu, T., Bui, T.Q., Zheng, X., Tanaka, S.: In-plane material inhomogeneity of functionally graded plates: a higher-order shear deformation plate isogeometric analysis. Compos. Part B Eng. 106, 273–284 (2016)

    Google Scholar 

  31. Zhang, W., Yang, J., Hao, Y.: Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn. 59(4), 619–660 (2010)

    MATH  Google Scholar 

  32. Shariyat, M., Asemi, K.: Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations. Compos. B Eng. 56, 934–947 (2014)

    Google Scholar 

  33. Chen, W.Q., Bian, Z.G., Ding, H.J.: Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. Int. J. Mech. Sci. 46(1), 159–171 (2004)

    MATH  Google Scholar 

  34. Hsu, T.: The Finite Element Method in Thermomechanics. Springer, Dordrecht (1986)

    Google Scholar 

  35. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  36. Asadi, E., Fariborz, S.J.: Free vibration of composite plates with mixed boundary conditions based on higher-order shear deformation theory. Arch. Appl. Mech. 82(6), 755–766 (2012)

    MATH  Google Scholar 

  37. Khdeir, A.A., Reddy, J.N.: Free vibrations of laminated composite plates using second-order shear deformation theory. Comput. Struct. 71(6), 617–626 (1999)

    Google Scholar 

  38. Classifications, Properties and Applications of Graphite. [updated September 10]. https://www.azom.com/article.aspx?ArticleID=1630 (2002)

  39. Golikova, O.A., Zaitsev, V.K., Orlov, V.M., Petrov, A.V., Stilbans, L.S., Tkalenko, E.N.: Thermal conductivity of boron and of its crystal structure analoges. Phys. Status Solidi (a) 21(2), 405–412 (1974)

    Google Scholar 

  40. Tong, T.W.: Thermal Conductivity, vol. 22. CRC Press, Boca Raton (1994)

    Google Scholar 

  41. Bauchau O.A., Craig, J.I.: Structural Analysis: With Applications to Aerospace Structures. Springer Science & Business Media (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Milani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

University of Zanjan is the primary affiliation of professor R. T. Faal.

Appendices

Appendix A

The elements of matrices \( \varvec{\varGamma} \) and R given in Eq. (20)

$$ \begin{aligned} & \varGamma_{11} = A_{66} \frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + A_{11} \frac{{\partial^{3} }}{{\partial x_{1}^{3} }} \\ & \varGamma_{12} = \left( {A_{12} + A_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{13} = \left( {B_{66} - \gamma E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + \left( {B_{11} - \gamma E_{11} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{3} }} \\ & \varGamma_{14} = \left( {B_{12} + B_{66} - \gamma \left( {E_{12} + E_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{15} = - \gamma \left( {\left( {E_{12} + 2E_{66} } \right)\frac{{\partial^{4} }}{{\partial x_{1}^{2} \partial x_{2}^{2} }} + E_{11} \frac{{\partial^{4} }}{{\partial x_{1}^{4} }}} \right) \\ & \varGamma_{21} = \left( {A_{12} + A_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} \\ & \varGamma_{22} = A_{22} \frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + A_{66} \frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{23} = \left( {B_{12} + B_{66} - \gamma \left( {E_{12} + E_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} \\ & \varGamma_{24} = \left( {B_{22} - \gamma E_{22} } \right)\frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + \left( {B_{66} - \gamma E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{25} = - \gamma \left( {E_{22} \frac{{\partial^{4} }}{{\partial x_{2}^{4} }} + \left( {E_{12} + 2E_{66} } \right)\frac{{\partial^{4} }}{{\partial x_{1}^{2} \partial x_{2}^{2} }}} \right) \\ & \varGamma_{31} = \gamma \left( {\left( {E_{12} + 2E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + E_{11} \frac{{\partial^{3} }}{{\partial x_{1}^{3} }}} \right) \\ & \varGamma_{32} = \gamma \left( {E_{22} \frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + \left( {E_{12} + 2E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }}} \right) \\ & \varGamma_{33} = \left( {9\gamma^{2} F_{55} - 6\gamma D_{55} + A_{55} } \right)\frac{\partial }{{\partial x_{1} }} + (\gamma F_{12} + 2\gamma F_{66} - \gamma^{2} H_{12} - 2\gamma^{2} H_{66} )\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + \left( {\gamma F_{11} - \gamma^{2} H_{11} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{3} }} \\ & \varGamma_{34} = \left( {9\gamma^{2} F_{44} - 6\gamma D_{44} + A_{44} } \right)\frac{\partial }{{\partial x_{2} }} + \left( {\gamma F_{22} - \gamma^{2} H_{22} } \right)\frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + (\gamma F_{12} + 2\gamma F_{66} - \gamma^{2} H_{12} - 2\gamma^{2} H_{66} )\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{35} = \left( {9\gamma^{2} F_{44} - 6\gamma D_{44} + A_{44} } \right)\frac{{\partial^{2} }}{{\partial x_{2}^{2} }} + \left( {9\gamma^{2} F_{55} - 6\gamma D_{55} + A_{55} } \right)\frac{{\partial^{2} }}{{\partial x_{1}^{2} }} - 2\gamma^{2} (H_{12} + 2H_{66} )\frac{{\partial^{4} }}{{\partial x_{1}^{2} \partial x_{2}^{2} }}\\ & \qquad \qquad - \gamma^{2} \left( {H_{11} \frac{{\partial^{4} }}{{\partial x_{1}^{4} }} + H_{22} \frac{{\partial^{4} }}{{\partial x_{2}^{4} }}} \right) \\ & \varGamma_{41} = \left( {B_{66} - \gamma E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + (B_{11} - \gamma E_{11} )\frac{{\partial^{3} }}{{\partial x_{1}^{3} }} \\ & \varGamma_{42} = \left( {B_{12} + B_{66} - \gamma \left( {E_{12} + E_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{43} = \left( {6\gamma D_{55} - 9\gamma^{2} F_{55} - A_{55} } \right)\frac{\partial }{{\partial x_{1} }} + \left( {D_{66} - 2\gamma F_{66} + \gamma^{2} H_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} + \left( {D_{11} - 2\gamma F_{11} + \gamma^{2} H_{11} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{3} }} \\ & \varGamma_{44} = \left( {D_{12} + D_{66} - 2\gamma \left( {F_{12} + F_{66} } \right) + \gamma^{2} \left( {H_{12} + H_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{45} = \left( {6\gamma D_{55} - 9\gamma^{2} F_{55} - A_{55} } \right)\frac{{\partial^{2} }}{{\partial x_{1}^{2} }} + (\gamma^{2} \left( {H_{12} + 2H_{66} } \right) - \gamma (F_{12} + 2F_{66} ))\frac{{\partial^{4} }}{{\partial x_{1}^{2} \partial x_{2}^{2} }} + \left( {\gamma^{2} H_{11} - \gamma F_{11} } \right)\frac{{\partial^{4} }}{{\partial x_{1}^{4} }} \\ & \varGamma_{51} = \left( {B_{12} + B_{66} - \gamma \left( {E_{12} + E_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} \\ & \varGamma_{52} = \left( {B_{22} - \gamma E_{22} } \right)\frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + \left( {B_{66} - \gamma E_{66} } \right)\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{53} = \left( {D_{12} + D_{66} - 2\gamma \left( {F_{12} + F_{66} } \right) + \gamma^{2} \left( {H_{12} + H_{66} } \right)} \right)\frac{{\partial^{3} }}{{\partial x_{1} \partial x_{2}^{2} }} \\ & \varGamma_{54} = \left( {6\gamma D_{44} - A_{44} - 9\gamma^{2} F_{44} } \right)\frac{\partial }{{\partial x_{2} }} + \left( {D_{22} - 2\gamma F_{22} + \gamma^{2} H_{22} } \right)\frac{{\partial^{3} }}{{\partial x_{2}^{3} }} + (D_{66} - 2\gamma F_{66} + \gamma^{2} H_{66} )\frac{{\partial^{3} }}{{\partial x_{1}^{2} \partial x_{2} }} \\ & \varGamma_{55} = \left( {6\gamma D_{44} - 9\gamma^{2} F_{44} - A_{44} } \right)\frac{\partial^2}{{\partial x_{2}^2 }} + \left( {\gamma^2 H_{22} - \gamma F_{22} } \right)\frac{{\partial^{4} }}{{\partial x_{2}^{4} }} + (\gamma^2 (H_{12} +2 H_{66} )- \gamma(F_{12} + 2F_{66}))\frac{{\partial^{4} }}{{\partial x_{1}^{2} \partial x_{2}^{2} }} \\ & R_{11} = - I_{1} \frac{\partial }{{\partial x_{1} }}, R_{12} = 0, R_{13} = - \left( {I_{2} - \gamma I_{4} } \right)\frac{\partial }{{\partial x_{1} }}, R_{14} = 0, \\ & R_{15} = \gamma I_{4} \frac{{\partial^{2} }}{{\partial x_{1}^{2} }}, \\ & R_{21} = 0, R_{22} = - I_{1} \frac{\partial }{{\partial x_{2} }}, R_{23} = 0, R_{24} = - \left( {I_{2} - \gamma I_{4} } \right)\frac{\partial }{{\partial x_{2} }}, \\ & R_{25} = \gamma I_{4} \frac{{\partial^{2} }}{{\partial x_{2}^{2} }}, \\ & R_{31} = - \gamma I_{4} \frac{\partial }{{\partial x_{1} }}, R_{32} = - \gamma I_{4} \frac{\partial }{{\partial x_{2} }}, \\ & R_{33} = - \gamma \left( {I_{5} - \gamma I_{7} } \right)\frac{\partial }{{\partial x_{1} }}, \\ & R_{34} = - \gamma \left( {I_{5} - \gamma I_{7} } \right)\frac{\partial }{{\partial x_{2} }}, R_{35} = - I_{1} + \gamma^{2} I_{7} \left( {\frac{{\partial^{2} }}{{\partial x_{1}^{2} }} + \frac{{\partial^{2} }}{{\partial x_{2}^{2} }}} \right), \\ & R_{41} = - (I_{2} - \gamma I_{4} )\frac{\partial }{{\partial x_{1} }}, R_{42} = 0, \\ & R_{43} = - \left( {I_{3} - 2\gamma I_{5} + \gamma^{2} I_{7} } \right)\frac{\partial }{{\partial x_{1} }}, R_{44} = 0, \\ & R_{45} = \gamma (I_{5} - \gamma I_{7} )\frac{{\partial^{2} }}{{\partial x_{1}^{2} }} \\ & R_{51} = 0, R_{52} = - (I_{2} - \gamma I_{4} )\frac{\partial }{{\partial x_{2} }}, R_{53} = 0, \\ & R_{54} = - \left( {I_{3} - 2\gamma I_{5} + \gamma^{2} I_{7} } \right)\frac{\partial }{{\partial x_{2} }}, R_{55} = \gamma (I_{5} - \gamma I_{7} )\frac{{\partial^{2} }}{{\partial x_{2}^{2} }} \\ \end{aligned} $$
(A.1)

Appendix B

The coefficients \( \alpha_{i} ,\beta_{j} ,\gamma_{i} , i = 1, \ldots .,6, j = 1, \ldots ,7 \) in Eq. (34)

$$ \begin{aligned} & \alpha_{1} = I_{1} \omega^{2} , \alpha_{2} = A_{22} , \alpha_{3} = \left( {I_{2} - \gamma I_{4} } \right)\omega^{2} , \\ & \alpha_{4} = \left( {B_{22} - \gamma E_{22} } \right), \alpha_{5} = - \gamma I_{4} \omega^{2} , \alpha_{6} = - \gamma E_{22} \\ & \beta_{1} = \gamma I_{4} \omega^{2} , \beta_{2} = \gamma E_{22} , \\ & \beta_{3} = A_{44} + 9\gamma^{2} F_{44} - 6\gamma D_{44} + \gamma \left( {I_{5} - \gamma I_{7} } \right)\omega^{2} , \\ & \beta_{4} = \gamma F_{22} - \gamma^{2} H_{22} , \beta_{5} = I_{1} \omega^{2} , \\ & \beta_{6} = A_{44} + 9\gamma^{2} F_{44} - 6\gamma D_{44} - \gamma^{2} I_{7} \omega^{2} - \psi_{22}^{1} , \beta_{7} = - \gamma^{2} H_{22} \\ & \gamma_{1} = \left( {I_{2} - \gamma I_{4} } \right)\omega^{2} , \gamma_{2} = \left( {B_{22} - \gamma E_{22} } \right), \\ & \gamma_{3} = - A_{44} - 6\gamma D_{44} + 9\gamma^{2} F_{44} + \left( {I_{3} - 2\gamma I_{5} + \gamma^{2} I_{7} } \right)\omega^{2} , \\ & \gamma_{4} = D_{44} - 2\gamma F_{22} + \gamma^{2} H_{22} , \\ & \gamma_{5} = - A_{44} - 9\gamma^{2} F_{44} + 6\gamma D_{44} - \gamma \left( {I_{5} - \gamma I_{7} } \right)\omega^{2} , \\ & \gamma_{6} = - \gamma F_{22} + \gamma^{2} H_{22} \\ \end{aligned} $$
(B.1)

Appendix C

The coefficients \( \delta_{4} , \delta_{3} ,\delta_{2} ,\delta_{1} \) and \( \delta_{0} \) used in Eq. (35)

$$ \begin{aligned} & \delta_{4} = \frac{{\alpha_{7} \gamma_{10} - \gamma_{7} \alpha_{10} }}{{\alpha_{7} - \beta_{8} \gamma_{7} }}, \delta_{3} = \frac{{\alpha_{10} - \beta_{8} \gamma_{10} - \alpha_{9} \gamma_{7} + \beta_{11} \gamma_{7} + \alpha_{7} \gamma_{9} }}{{\alpha_{7} - \beta_{8} \gamma_{7} }} \\ & \delta_{2} = \frac{{\alpha_{9} - \beta_{11} - \alpha_{8} \gamma_{7} + \beta_{10} \gamma_{7} + \alpha_{7} \gamma_{8} - \beta_{8} \gamma_{9} }}{{\alpha_{7} - \beta_{8} \gamma_{7} }} \\ & \delta_{1} = \frac{{\alpha_{8} - \beta_{10} + \beta_{9} \gamma_{7} - \beta_{8} \gamma_{8} }}{{\alpha_{7} - \beta_{8} \gamma_{7} }}, \delta_{0} = \frac{{ - \beta_{9} }}{{\alpha_{7} - \beta_{8} \gamma_{7} }} \\ & \alpha_{7} = \frac{1}{d}\left( {\alpha_{4} \beta_{3} \gamma_{2} - \alpha_{3} \beta_{4} \gamma_{2} - \alpha_{4} \beta_{2} \gamma_{3} + \alpha_{2} \beta_{4} \gamma_{3} + \alpha_{3} \beta_{2} \gamma_{4} - \alpha_{2} \beta_{3} \gamma_{4} } \right) \\ & \alpha_{8} = \frac{{\beta_{5} \left( { - \alpha_{3} \gamma_{2} + \alpha_{2} \gamma_{3} } \right)}}{d } \\ & \alpha_{9} = \frac{ - 1}{d}\left( { - \alpha_{5} \beta_{3} \gamma_{2} + \alpha_{3} \beta_{6} \gamma_{2} + \alpha_{5} \beta_{2} \gamma_{3} - \alpha_{2} \beta_{6} \gamma_{3} - \alpha_{3} \beta_{2} \gamma_{5} + \alpha_{2} \beta_{3} \gamma_{5} } \right) \\ & \alpha_{10} = \frac{ - 1}{d}\left( { - \alpha_{6} \beta_{3} \gamma_{2} + \alpha_{3} \beta_{7} \gamma_{2} + \alpha_{6} \beta_{2} \gamma_{3} - \alpha_{2} \beta_{7} \gamma_{3} - \alpha_{3} \beta_{2} \gamma_{6} + \alpha_{2} \beta_{3} \gamma_{6} } \right) \\ & \beta_{8} = \frac{1}{d}\left( { - \alpha_{4} \beta_{3} \gamma_{1} + \alpha_{3} \beta_{4} \gamma_{1} + \alpha_{4} \beta_{1} \gamma_{3} - \alpha_{1} \beta_{4} \gamma_{3} - \alpha_{3} \beta_{1} \gamma_{4} + \alpha_{1} \beta_{3} \gamma_{4} } \right) \\ & \beta_{9} = \frac{{\beta_{5} \left( {\alpha_{3} \gamma_{1} - \alpha_{1} \gamma_{3} } \right)}}{d} \\ & \beta_{10} = \frac{1}{d}\left( { - \alpha_{5} \beta_{3} \gamma_{1} + \alpha_{3} \beta_{6} \gamma_{1} + \alpha_{5} \beta_{1} \gamma_{3} - \alpha_{1} \beta_{6} \gamma_{3} - \alpha_{3} \beta_{1} \gamma_{5} + \alpha_{1} \beta_{3} \gamma_{5} } \right) \\ & \beta_{11} = \frac{1}{d}\left( { - \alpha_{6} \beta_{3} \gamma_{1} + \alpha_{3} \beta_{7} \gamma_{1} + \alpha_{6} \beta_{1} \gamma_{3} - \alpha_{1} \beta_{7} \gamma_{3} - \alpha_{3} \beta_{1} \gamma_{6} + \alpha_{1} \beta_{3} \gamma_{6} } \right) \\ & \gamma_{7} = \frac{ - 1}{d}\left( { - \alpha_{4} \beta_{2} \gamma_{1} + \alpha_{2} \beta_{4} \gamma_{1} + \alpha_{4} \beta_{1} \gamma_{2} - \alpha_{1} \beta_{4} \gamma_{2} - \alpha_{2} \beta_{1} \gamma_{4} + \alpha_{1} \beta_{2} \gamma_{4} } \right) \\ & \gamma_{8} = \frac{{ - \beta_{5} \left( {\alpha_{2} \gamma_{1} - \alpha_{1} \gamma_{2} } \right)}}{d} \\ & \gamma_{9} = \frac{ - 1}{d}\left( { - \alpha_{5} \beta_{2} \gamma_{1} + \alpha_{2} \beta_{6} \gamma_{1} + \alpha_{5} \beta_{1} \gamma_{2} - \alpha_{1} \beta_{6} \gamma_{2} - \alpha_{2} \beta_{1} \gamma_{5} + \alpha_{1} \beta_{2} \gamma_{5} } \right) \\ & \gamma_{10} = \frac{ - 1}{d}\left( { - \alpha_{6} \beta_{2} \gamma_{1} + \alpha_{2} \beta_{7} \gamma_{1} + \alpha_{6} \beta_{1} \gamma_{2} - \alpha_{1} \beta_{7} \gamma_{2} - \alpha_{2} \beta_{1} \gamma_{6} + \alpha_{1} \beta_{2} \gamma_{6} } \right) \\ & d = - \alpha_{3} \beta_{2} \gamma_{1} + \alpha_{2} \beta_{3} \gamma_{1} + \alpha_{3} \beta_{1} \gamma_{2} - \alpha_{1} \beta_{3} \gamma_{2} - \alpha_{2} \beta_{1} \gamma_{3} + \alpha_{1} \beta_{2} \gamma_{3} \\ \end{aligned} $$
(C.1)

Appendix D

The coefficients in Eq. (36)

$$ \begin{aligned} & \bar{C}_{i} = C_{i} \left( {\frac{{\alpha_{8} }}{{\tau_{i} }} + \alpha_{9} \tau_{i} + \alpha_{10} \tau_{i}^{3} + \frac{{\alpha_{7} \left( {A_{1} + A_{2} \tau_{i}^{2} + A_{3} \tau_{i}^{4} + A_{4} \tau_{i}^{6} } \right)}}{{\tau_{i} }}} \right)e^{{\tau_{i} x_{2} }} \\ & \tilde{C}_{i} = C_{i} \left( {\frac{{A_{1} }}{{\tau_{i}^{3} }} + \frac{{A_{2} }}{{\tau_{i} }} + A_{3} \tau_{i} + A_{4} \tau_{i}^{3} } \right)e^{{\tau_{i} x_{2} }} ,\quad i = 1, \ldots ,8,\quad \tau_{2i - 1} = - \tau_{2i} \\ & A_{1} = - \frac{{\beta_{9} \gamma_{7} }}{{(\beta_{8} \gamma_{7} - \alpha_{7} )}}, A_{2} = \frac{{\alpha_{8} \gamma_{7} - \beta_{10} \gamma_{7} - \alpha_{7} \gamma_{8} }}{{(\beta_{8} \gamma_{7} - \alpha_{7} )}}, \\ & A_{3} = \frac{{\alpha_{9} \gamma_{7} - \beta_{11} \gamma_{7} - \alpha_{7} \gamma_{9} }}{{(\beta_{8} \gamma_{7} - \alpha_{7} )}}, A_{4} = \frac{{\alpha_{10} \gamma_{7} - \alpha_{7} \gamma_{10} }}{{(\beta_{8} \gamma_{7} - \alpha_{7} )}} \\ \end{aligned} $$
(D.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourki, R., Faal, R.T. & Milani, A.S. Vibration Analysis of Orthotropic Functionally Graded Composite Plates in Thermal Environment Using High-Order Shear Deformation Theory: Frequency Suppression by Tuning the In-Plane Forces. Int. J. Appl. Comput. Math 6, 59 (2020). https://doi.org/10.1007/s40819-020-00806-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00806-5

Keywords

Navigation