Skip to main content
Log in

Numerical Technique for Solving Fractional Generalized Pantograph-Delay Differential Equations by Using Fractional-Order Hybrid Bessel Functions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces a new computational technique for dealing with fractional generalized pantograph-delay differential equations (PDDEs). The main idea of the proposed method is based on the fractional-order hybrid Bessel functions (FHBFs), which are constructed by the combination of fractional Bessel functions with block-pulse functions. The fractional derivative is applied in the Caputo sense. In the numerical technique, the operational matrix of fractional derivative is applied to reduce fractional generalized PDDEs to a system of algebraic equations with unknown fractional-order hybrid Bessel coefficients. In addition, the estimation of the error is analyzed. The error analysis indicates that when the number of FHBFs bases is increased, the obtained results convergent to the exact solution. Illustrative examples will be examined to demonstrate the validity and applicability of the presented technique. Also, the outcomes in comparison with the existing results in other methods illustrate the preference of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ajello, W.G., Freedman, H.I., Wu, J.: A model of stage structured population growth with density depended time delay. SIAM J. Appl. Math. 52, 855–869 (1992)

    MathSciNet  Google Scholar 

  2. Andrews, L.C.: Special Functions for Engineers and Applied Mathematicians. Macmillan Publishing Co., New York (1985)

    Google Scholar 

  3. Bagley, R.L., Torvik, P.J.: Fractional calculus in the transient analysis of viscoelastically damped structures. J. AIAA 23, 918–925 (1985)

    MATH  Google Scholar 

  4. Balachanran, K., Kiruthika, S.: Existence of solution of nonlinear fractional pantograph equations. Acta Math. Sci. 33(3), 712–720 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Balci, M.A., Sezer, M.: Hybrid Euler–Taylor matrix method for solving of generalized linear Fredholm integro-differential difference equations. Appl. Math. Comput. 273, 33–41 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Behbahani, Z.J., Roodaki, M.: Two-dimensional Chebyshev hybrid functions and their applications to integral equations. Beni-Suef Univ. J. Basic Appl. Sci. 4, 134–141 (2015)

    Google Scholar 

  7. Bhrawy, A.H., Alhamed, Y.A., Baleanu, D., Al-zahrani, A.A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17, 1138–1157 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Brzdek, J., Eghbali, N.: On approximate solutions of some delayed fractional differential equations. Appl. Math. Lett. 54, 31–35 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Buhmann, M.D., Iserles, A.: Stability of the discretized pantograph differential equation. Math. Comput. 60, 575–589 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Darani, M.A., Saadatmandi, A.: The operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications. Comput. Methods Differ. Equ. 5(1), 67–87 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Davis, A.R., Karageorghis, A., Phillips, T.N.: Spectral Galerkin methods for the primary two-point bour problem in modeling viscoelastic flows. Int. J. Numer. Methods Eng. 26, 647–662 (1988)

    MATH  Google Scholar 

  12. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336, 433–453 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Dehestani, H., Ordokhani, Y., Razzaghi, M.: On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. Numer. Linear Algebra Appl. 26, e2259 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. Math. Methods Appl. Sci. 42, 7296–7313 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77, 43–54 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Fox, L., Mayers, D.F., Ockendon, J.A., Tayler, A.B.: On a functional differential equation. J. Inst. Math. Appl. 8, 271–307 (1971)

    MathSciNet  MATH  Google Scholar 

  17. He, J.H.: Nonlinear oscillation with fractional derivative and its applications. Int. Conf. Vib. Eng. 98, 288–291 (1998)

    Google Scholar 

  18. Heydari, M., Loghmani, G.B., Hosseini, S.M., Karbassi, S.M.: Application of hybrid functions for solving duffing-harmonic oscillator. Adv. Differ. Equ. 2014, 210754 (2014)

    Google Scholar 

  19. Hou, J., Yang, C.: Numerical method in solving fredholm integro-differential equations by using hybrid function operational matrix of derivative. J. Inf. Comput. Sci. 10(9), 2757–2764 (2013)

    Google Scholar 

  20. Iqbal, M.A., Saeed, U., Mohyud-Din, S.T.: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egypt. J. Basic Appl. Sci. 2, 50–54 (2015)

    Google Scholar 

  21. Javadi, S., Babolian, E., Taheri, Z.: Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials. J. Comput. Appl. Math. 303, 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37, 5498–5510 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3), 803–806 (2002)

    Google Scholar 

  24. Lederman, C., Roquejoffre, J.M., Wolanski, N.: Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames. Ann. Mat. Pura Appl. 183, 173–239 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    MATH  Google Scholar 

  26. Mashayekhi, S., Razzaghi, M., Wattanataweekul, M.: Analysis of multi-delay and piecewise constant delay systems by hybrid functions approximation. Differ. Equ. Dyn. Syst. 24(1), 1–20 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15, 939–945 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7, 120–127 (2013)

    Google Scholar 

  29. Mohammadi, F.: Numerical solution of systems of fractional delay differential equations using a new kind of wavelet basis. Comput. Appl. Math. 37, 4122 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A 322(1551), 447–468 (1971)

    Google Scholar 

  31. Odibat, Z., Momani, S., Erturk, V.S.: Generalized differential transform method: application to differential equations of fractional order. Appl. Math. Comput. 197(2), 467–477 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Odibat, Z., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Ozturk, Y., Gulsu, M.: Approximate solution of linear generalized pantograph equations with variable coefficients on Chebyshev–Gauss grid. J. Adv. Res. Sci. Comput. 4, 36–51 (2012)

    MathSciNet  Google Scholar 

  34. Phillips, G.M., Taylor, P.J.: Theory and Application of Numerical Analysis. Academic Press, New York (1973)

    Google Scholar 

  35. Pimenov, V.G., Hendy, A.S.: Numerical studies for fractional functional differential equations with delay based on BDF-type shifted Chebyshev approximations. Abstr. Appl. Anal. 2015, 1–12 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Muntz–Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algorithms 77(4), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74(1), 223–245 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Saeed, U., Rehmana, M.: Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014, 1–8 (2014)

    Google Scholar 

  39. Saeed, U., Rehmana, M., Iqbal, M.A.: Modified Chebyshev wavelet methods for fractional delay-type equations. Appl. Math. Comput. 264, 431–442 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Sansone, G.: Orthogonal Functions. Interscience Publishers Inc., New York (1959)

    MATH  Google Scholar 

  41. Sakar, M.G., Saldır, O., Akgul, A.: Numerical solution of fractional Bratu type equations with Legendre reproducing kernel method. Int. J. Appl. Comput. Math. 4, 126 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Sedaghat, S., Ordokhani, Y., Dehghan, M.: Numerical solution of delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonlinear Sci. Numer. Simul. 17, 4815–4830 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Sezer, M., Akyuz-Das-cioglu, A.: A Taylor method for numerical solution of generalized pantograph equations with linear function alargument. J. Comput. Appl. Math. 200, 217–225 (2007)

    MathSciNet  Google Scholar 

  44. Thomas, D.C., Ilinskii, Y.A., Hamilton, M.F.: Delay differential equation models for single and coupled bubble dynamics in a compressible liquid. (2013). arXiv:1310.2895

  45. Wang, Z., Huang, X., Zhou, J.: A numerical method for delayed fractional-order differential equations: based on G–L definition. Appl. Math. Inf. Sci. 7(2), 525–529 (2013)

    MathSciNet  Google Scholar 

  46. Yuzbasi, S., Sezer, M.: An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model. 37, 9160–9173 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Yuzbasi, S.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 219, 6328–6343 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Zhao, J., Cao, Y., Xu, Y.: Sinc numerical solution for pantograph Volterra delay-integro-differential equation. Int. J. Comput. Math. 94(5), 853–865 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, H., Ordokhani, Y. & Razzaghi, M. Numerical Technique for Solving Fractional Generalized Pantograph-Delay Differential Equations by Using Fractional-Order Hybrid Bessel Functions. Int. J. Appl. Comput. Math 6, 9 (2020). https://doi.org/10.1007/s40819-019-0756-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0756-2

Keywords

Mathematics Subject Classification

Navigation