Skip to main content
Log in

A Highly Accurate Time–Space Pseudospectral Approximation and Stability Analysis of Two Dimensional Brusselator Model for Chemical Systems

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the authors investigate the numerical solutions of two-dimensional reaction–diffusion equations with Neumann boundary conditions, known as Brusselator model, using Chebyshev pseudospectral method. The proposed methods are established in both time and space to approximate the solutions and prove the stability analysis of the equations. Higher order Chebyshev differential matrix is used in discretizing Brusselator model. The methods convert the Brusselator model into a system ofS algebraic equations, which are solved using Newton–Raphson method and obtained different types of patterns. Error of the proposed method is presented in terms of \( L_{\infty }\) and \( L_{2}\) error norms. In support of theoretical results, the methods are implemented on two problems and found highly accurate and stable approximations. The detailed comparison of the proposed method with various other methods are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adomian, G.: The diffusion-Brusselator equation. Comput. Math. Appl. 29(5), 1–3 (1995)

    Article  MathSciNet  Google Scholar 

  2. Alkhalaf, S.: Third-order approximate solution of chemical reaction–diffusion Brusselator system using optimal homotopy asymptotic method. Adv. Math. Phys. 2017, 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  3. Andreianov, B., Bendahmane, M., Ruiz-Baier, R.: Analysis of a finite volume method for a cross-diffusion model in population dynamics. Math. Models Methods Appl. Sci. 21(02), 307–344 (2011)

    Article  MathSciNet  Google Scholar 

  4. Ang, W.-T.: The two-dimensional reaction–diffusion brusselator system: a dual-reciprocity boundary element solution. Eng. Anal. Bound. Elem. 27(9), 897–903 (2003)

    Article  Google Scholar 

  5. Auchmuty, J., Nicolis, G.: Bifurcation analysis of nonlinear reaction–diffusion equations-I. Evolution equations and the steady state solutions. Bull. Math. Biol. 37(4), 323–365 (1975)

    Article  MathSciNet  Google Scholar 

  6. Biazar, J., Ayati, Z.: A numerical solution of reaction–diffusion Brusselator system by ADM. J. Nat. Sci. Sustain. Technol. 1(2), 263–270 (2008)

    Google Scholar 

  7. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Courier Corporation, North Chelmsford (2001)

    MATH  Google Scholar 

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Chowdhury, M., Hassan, T., Mawa, S.: A new application of homotopy perturbation method to the reaction–diffusion Brusselator model. Proc. Soc. Behav. Sci. 8, 648–653 (2010)

    Article  Google Scholar 

  10. Dehghan, M., Abbaszadeh, M.: Variational multiscale element free galerkin (VMEFG) and local discontinuous galerkin (LDG) methods for solving two-dimensional Brusselator reaction–diffusion system with and without cross-diffusion. Comput. Method Appl. Mech. Eng. 300, 770–797 (2016)

    Article  MathSciNet  Google Scholar 

  11. Elyukhina, I.: Nonlinear stability analysis of the full Brusselator reaction–diffusion model. Theor. Found. Chem. Eng. 48(6), 806–812 (2014)

    Article  Google Scholar 

  12. Ersoy, O., Dag, I.: Numerical solutions of the reaction–diffusion system by using exponential cubic b-spline collocation algorithms. Open Phys. 13(1), 414–427 (2015)

    Article  Google Scholar 

  13. Ghergu, M., Rădulescu, V.: Turing patterns in general reaction–diffusion systems of Brusselator type. Commun. Contemp. Math. 12(04), 661–679 (2010)

    Article  MathSciNet  Google Scholar 

  14. Herschkowitz-Kaufman, M., Nicolis, G.: Localized spatial structures and nonlinear chemical waves in dissipative systems. J. Chem. Phys. 56(5), 1890–1895 (1972)

    Article  Google Scholar 

  15. Hu, G., Qiao, Z., Tang, T.: Moving finite element simulations for reaction–diffusion systems. Adv. Appl. Math. Mech. 4(3), 365–381 (2012)

    Article  MathSciNet  Google Scholar 

  16. Islam, S., Ali, A., Haq, S.: A computational modeling of the behavior of the two-dimensional reaction–diffusion brusselator system. Appl. Math. Model. 34(12), 3896–3909 (2010)

    Article  MathSciNet  Google Scholar 

  17. Jia, Y., Li, Y., Wu, J.: Coexistence of activator and inhibitor for Brusselator diffusion system in chemical or biochemical reactions. Appl. Math. Lett. 53, 33–38 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jiwari, R., Tomasiello, S., Tornabene, F.: A numerical algorithm for computational modelling of coupled advection–diffusion–reaction systems. Eng. Comput. 35(3), 1383–1401 (2018)

    Article  Google Scholar 

  19. Khani, F., Samadi, F., Hamedi-Nezhad, S.: New exact solutions of the Brusselator reaction diffusion model using the exp-function method. Math. Probl. Eng. 2009, 1–9 (2009)

    Article  MathSciNet  Google Scholar 

  20. Kumar, S., Khan, Y., Yildirim, A.: A mathematical modeling arising in the chemical systems and its approximate numerical solution. Asia Pac. J. Chem. Eng. 7(6), 835–840 (2012)

    Article  Google Scholar 

  21. Lefever, R.: Dissipative structures in chemical systems. J. Chem. Phys. 49(11), 4977–4978 (1968)

    Article  Google Scholar 

  22. Lefever, R., Nicolis, G.: Chemical instabilities and sustained oscillations. J. Theor. Biol. 30(2), 267–284 (1971)

    Article  Google Scholar 

  23. Lin, Z., Ruiz-Baier, R., Tian, C.: Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mittal, R., Jiwari, R.: Numerical solution of two-dimensional reaction–diffusion Brusselator system. Appl. Math. Comput. 217(12), 5404–5415 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Mohammadi, M., Mokhtari, R., Schaback, R.: A meshless method for solving the 2D Brusselator reaction–diffusion system. Comput. Model. Eng. Sci. 101, 113–138 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Pena, B., Perez-Garcia, C.: Stability of turing patterns in the Brusselator model. Phys. Rev. E 64(5), 056213 (2001)

    Article  MathSciNet  Google Scholar 

  27. Peng, R., Wang, M.: Pattern formation in the Brusselator system. J. Math. Anal. Appl. 309(1), 151–166 (2005)

    Article  MathSciNet  Google Scholar 

  28. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48(4), 1695–1700 (1968)

    Article  Google Scholar 

  29. Ruuth, S.J.: Implicit-explicit methods for reaction–diffusion problems in pattern formation. J. Math. Biol. 34(2), 148–176 (1995)

    Article  MathSciNet  Google Scholar 

  30. Shirzadi, A., Sladek, V., Sladek, J.: A meshless simulations for 2D nonlinear reaction–diffusion Brusselator system. CMES Comput. Model. Eng. Sci. 95(4), 259–282 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Stoltz, S. M.: Pattern formation in the Brusselator model of chemical reactions (Doctoral dissertation, University of Pretoria) (2016)

  32. Twizell, E.H., Gumel, A.B., Cao, Q.: A second-order scheme for the “Brusselator” reaction–diffusion system. J. Math. Chem. 26(4), 297–316 (1999)

    Article  MathSciNet  Google Scholar 

  33. Vandewalle, S., Piessens, R.: Numerical experiments with nonlinear multigrid waveform relaxation on a parallel processor. Appl. Numer. Math. 8(2), 149–161 (1991)

    Article  Google Scholar 

  34. Wazwaz, A.-M.: The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model. Appl. Math. Comput. 110(2–3), 251–264 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author thankfully acknowledges to the Ministry of Human Resource Development, India, for providing financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mittal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A.K., Balyan, L.K. A Highly Accurate Time–Space Pseudospectral Approximation and Stability Analysis of Two Dimensional Brusselator Model for Chemical Systems. Int. J. Appl. Comput. Math 5, 140 (2019). https://doi.org/10.1007/s40819-019-0727-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0727-7

Keywords

Navigation