Skip to main content
Log in

The Deterministic and Stochastic Solutions of the NLEEs in Mathematical Physics

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper poses the new Riccati–Bernoulli Sub-ODE method in order to find the exact and random traveling wave solutions for the \((1+1)\)-dimensional nonlinear dispersive modified Benjamin–Bona and the Drinfel’d–Sokolov–Wilson equation. We use this method in deterministic case as well as a random case. Additionally, we can show and discuss this method under some random distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdelrahman, M.A.E., Kunik, M.: The ultra-relativistic Euler equations. Math. Methods Appl. Sci. 38, 1247–1264 (2015)

    Article  MathSciNet  Google Scholar 

  2. Abdelrahman, M.A.E.: Global solutions for the ultra-relativistic Euler equations. Nonlinear Anal. 155, 140–162 (2017)

    Article  MathSciNet  Google Scholar 

  3. Abdelrahman, M.A.E.: On the shallow water equations. Z. Naturforsch. 72(9a), 873–879 (2017)

    Google Scholar 

  4. Razborova, P., Ahmed, B., Biswas, A.: Solitons, shock waves and conservation laws of Rosenau–KdV–RLW equation with power law nonlinearity. Appl. Math. Inf. Sci. 8(2), 485–491 (2014)

    Article  MathSciNet  Google Scholar 

  5. Biswas, A., Mirzazadeh, M.: Dark optical solitons with power law nonlinearity using \(G^{\prime }/G\)-expansion. Optik 125, 4603–4608 (2014)

    Article  Google Scholar 

  6. Younis, M., Ali, S., Mahmood, S.A.: Solitons for compound KdV Burgers equation with variable coefficients and power law nonlinearity. Nonlinear Dyn. 81, 1191–1196 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Malfliet, W.: Solitary wave solutions of nonlinear wave equation. Am. J. Phys. 60, 650–654 (1992)

    Article  MathSciNet  Google Scholar 

  9. Malflieta, W., Hereman, W.: The tanh method: exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 714–723 (2004)

    Google Scholar 

  11. Dai, C.Q., Zhang, J.F.: Jacobian elliptic function method for nonlinear differential difference equations. Chaos Solitons Fractals 27, 1042–1049 (2006)

    Article  MathSciNet  Google Scholar 

  12. Fan, E., Zhang, J.: Applications of the Jacobi elliptic function method to special-type nonlinear equations. Phys. Lett. A 305, 383–392 (2002)

    Article  MathSciNet  Google Scholar 

  13. Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  MathSciNet  Google Scholar 

  14. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MathSciNet  Google Scholar 

  15. Aminikhad, H., Moosaei, H., Hajipour, M.: Exact solutions for nonlinear partial differential equations via Exp-function method. Numer. Methods Partial Differ. Equ. 26, 1427–1433 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Wazwaz, A.M.: Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput. Math. Appl. 50, 1685–1696 (2005)

    Article  MathSciNet  Google Scholar 

  17. Wazwaz, A.M.: A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Article  MathSciNet  Google Scholar 

  18. Yan, C.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77–84 (1996)

    Article  MathSciNet  Google Scholar 

  19. Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246, 403–406 (1998)

    Article  Google Scholar 

  20. Wang, M.L.: Exct solutions for a compound KdV–Burgers equation. Phys. Lett. A 213, 279–287 (1996)

    Article  MathSciNet  Google Scholar 

  21. Ren, Y.J., Zhang, H.Q.: A generalized F-expansion method to find abundant families of Jacobi elliptic function solutions of the \((2+1)\)-dimensional Nizhnik–Novikov–Veselov equation. Chaos Solitons Fractals 27, 959–979 (2006)

    Article  MathSciNet  Google Scholar 

  22. Zhang, J.L., Wang, M.L., Wang, Y.M., Fang, Z.D.: The improved F-expansion method and its applications. Phys. Lett. A 350, 103–109 (2006)

    Article  Google Scholar 

  23. EL-Wakil, S.A., Abdou, M.A.: New exact travelling wave solutions using modified extented tanh-function method. Chaos Solitons Fractals 31, 840–852 (2007)

    Article  MathSciNet  Google Scholar 

  24. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  Google Scholar 

  25. Wazwaz, A.M.: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl. Math. Comput. 187, 1131–1142 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Wang, M.L., Zhang, J.L., Li, X.Z.: The \( (\frac{G^{^{\prime }}}{G}) \)-expansion method and travelling wave solutions of nonlinear evolutions equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zhang, S., Tong, J.L., Wang, W.: A generalized \((\frac{G^{^{\prime }}}{G})\)-expansion method for the mKdv equation with variable coefficients. Phys. Lett. A 372, 2254–2257 (2008)

    Article  Google Scholar 

  28. Kumar, D., Agarwal, R.P., Singh, J.: A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339, 405–413 (2018)

    Article  MathSciNet  Google Scholar 

  29. Kumar, D., Singh, J., Baleanu, D.: A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 91, 307–317 (2018)

    Article  MathSciNet  Google Scholar 

  30. Kumar, D., Singh, J., Baleanu, D., Rathore, S.: Analysis of a fractional model of Ambartsumian equation. Eur. J. Phys. Plus 133, 259 (2018)

    Article  Google Scholar 

  31. Singha, J., Kumara, D., Baleanubc, D., Rathore, S.: An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 335, 12–24 (2018)

    MathSciNet  Google Scholar 

  32. He, J.H.: Asymptotic methods for solitary solutions and compactons. Abstr. Appl. Anal. 2012, 130 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Yusufoglu, E.: New solitary solutions for the MBBM equations using exp-function method. Phys. Lett. 372, 442–446 (2008)

    Article  MathSciNet  Google Scholar 

  34. Khan, K., Akbar, M.A., Islam, S.M.R.: Exact solutions for \((1+1)\)-dimensional nonlinear dispersive modified Benjamin–Bona–Mahony equation and coupled Klein–Gordon equations. SpringerPlus 3, 19 (2014)

    Article  Google Scholar 

  35. Drinfel’d, V.G., Sokolov, V.V.: Equations of Korteweg-de Vries type and simple Lie algebras. Sov. Math., Dokl. 23, 457–462 (1981)

    MATH  Google Scholar 

  36. Wilson, G.: The affine Lie algebra \(C^{(1)}_{2}\) and an equation of Hirota and Satsuma. Phys. Lett. A 89, 332 (1982)

    Article  MathSciNet  Google Scholar 

  37. Khan, K., Akbar, M.A., Alam, M.N.: Traveling wave solutions of the nonlinear Drinfel’d–Sokolov–Wilson equation and modified Benjamin–Bona–Mahony equations. J. Egypt. Math. Soc. 21, 233–240 (2013)

    Article  MathSciNet  Google Scholar 

  38. Misirli, E., Gurefe, Y.: Exact solutions of the Drinfel’d–Sokolov–Wilson equation using the exp-function method. Appl. Math. Comput. 216, 2623–2627 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Abdelrahman, M.A.E., Sohaly, M.A.: On the new wave solutions to the MCH equation. Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1354-6

    Article  Google Scholar 

  40. Abdelrahman, M.A.E., Sohaly, M.A.: Solitary waves for the nonlinear Schrödinger problem with theprobability distribution function in the stochastic input case. Eur. Phys. J. Plus 132, 339 (2017)

    Article  Google Scholar 

  41. El-Tawil, M.A., Sohaly, M.A.: Mean square convergent three points finite difference scheme for random partial differential equations. J. Egypt. Math. Soc. 20(3), 188–204 (2012)

    Article  MathSciNet  Google Scholar 

  42. Sohaly, M.: Mean square Heun’s method convergent for solving random differential initial value problems of first order. Am. J. Comput. Math. 4, 474–481 (2014). https://doi.org/10.4236/ajcm.2014.45040

    Article  Google Scholar 

  43. Yang, X.F., Deng, Z.C., Wei, Y.: A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ. 1, 117–133 (2015)

    Article  MathSciNet  Google Scholar 

  44. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Soliton Fractals 30, 700–708 (2006)

    Article  MathSciNet  Google Scholar 

  45. He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using exp-function method. Chaos Soliton Fractals 34, 1421–1429 (2007)

    Article  MathSciNet  Google Scholar 

  46. Wu, X.H., He, J.H.: Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method. Comput. Math. Appl. 54, 966–986 (2007)

    Article  MathSciNet  Google Scholar 

  47. Xu, Y.G., Zhou, X.W., Yao, L.: Solving the fifth order Caudrey–Dodd–Gibbon (CDG) equation using the exp-function method. Appl. Math. Comput. 206, 70–73 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. E. Abdelrahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, M.A.E., Sohaly, M.A. & Moaaz, O. The Deterministic and Stochastic Solutions of the NLEEs in Mathematical Physics. Int. J. Appl. Comput. Math 5, 40 (2019). https://doi.org/10.1007/s40819-019-0623-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0623-1

Keywords

Mathematics Subject Classification

Navigation