Skip to main content
Log in

Impact of Thermal Radiation on an Unsteady Casson Nanofluid Flow Over a Stretching Surface

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This article employs the analytical approach to examine the heat and mass transfer characteristics on an unsteady flow of Casson nanofluid past an elongated surface with thermal radiation effect. A perturbation technique is adopted to solve the governing equations of the flow. Copper, Silver and Ferrous nanoparticles are suspended in water based nanofluid. Impacts of physical parameters like nanoparticle volume fraction, thermal radiation, magnetic field, stretching parameter, heat source/sink, a chemical reaction on velocity, thermal and concentration attributes along with wall friction, heat, and mass transfer rates are demonstrated with the aid of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. Obtained results demonstrate the volumetric size, shape and conductive property of the nanoparticle play an important role in enriching the effectiveness of convection heat transfer of nanofluids. Also, Casson nanofluid has a tendency to reduce the velocity of the fluid due to its higher viscidness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

x, y :

Cartesian coordinates (m)

\( u,v \) :

Velocity component at x, y direction respectively (m s−1)

t :

Time (s)

\( B_{o} \) :

Magnetic field strength

\( R \) :

Thermal radiation

\( U_{w} \) :

Sheet velocity

\( T_{s} \) :

Surface temperature (K)

\( T_{0} \) :

Free stream temperature (K)

\( M \) :

Magnetic field

\( S \) :

Stretching parameter

\( R \) :

Radiation parameter

\( \Pr \) :

Prandtl number

\( C_{f} \) :

Skin friction coefficient

\( k^{*} \) :

Mean absorption coefficient

\( q_{w} \) :

Heat flux from the flux (J m−2 s−1)

\( Nu_{x} \) :

Local Nusselt number

\( \text{Re}_{x} \) :

Local Reynolds number

\( \sigma^{*} \) :

Stefan–Boltzman constant

\( \xi \) :

Casson fluid parameter

\( \mu_{nf} \) :

Viscosity (kg m−1 s−2)

\( (\rho c_{p} )_{nf} \) :

Heat capacitance (J m−3 K−1)

\( k_{nf} ,k_{f} \) :

Thermal conductivity

\( \rho_{f} ,\rho_{s} ,\rho_{nf} \) :

Density (kg m−3)

\( \phi \) :

Volume fraction

\( \upsilon_{f} \) :

Kinematic viscosity (m2 s−1)

nf :

Nanofluid

f :

Base fluid

s :

Solid

References

  1. Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645–647 (1970)

    Google Scholar 

  2. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  3. Wang, C.Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

    Article  MathSciNet  Google Scholar 

  4. Siddheshwar, P.G., Mahabaleswar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Nonlinear. Mech. 40, 807–820 (2005)

    Article  Google Scholar 

  5. Partha, M.K., Murthy, P.V.S.N., Rajasekhar, G.P.: Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat Mass Transf. 41, 360–366 (2005)

    Article  Google Scholar 

  6. Cortell, R.: Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Abel, M.S., Mahesha, N., Tawade, J.: Heat transfer in a liquid film over an unsteady stretching surface with viscous dissipation in presence of external magnetic field. Appl. Math. Model. 33, 3430–3441 (2009)

    Article  MathSciNet  Google Scholar 

  8. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows, FED-231/MD-66, pp. 99–105 (1995)

  9. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  10. Vajravelu, K., Prasad, K.V., Lee, J., Lee, C., Pop, I., Gorder, R.A.: Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface. Int. J. Therm. Sci. 50, 843–851 (2011)

    Article  Google Scholar 

  11. Gireesha, B.J., Manjunatha, S., Bagewadi, C.S.: Unsteady hydromagnetics boundary layer flow and heat transfer of dusty fluid over a stretching sheet. Afrika Mat. 23, 229–241 (2012)

    Article  Google Scholar 

  12. El-aziz, M.A.: Mixed convection flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation. J. Egypt. Math. Soc. 21, 385–394 (2013)

    Article  MathSciNet  Google Scholar 

  13. Abbas, Z., Sheikh, M., Sajid, M.: Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Can. J. Phys. 92, 1113–1123 (2014)

    Article  Google Scholar 

  14. Madhu, M., Kishan, N.: Magnetohydrodynamic mixed convection stagnation-point flow of a power-law non-Newtonian nanofluid towards a stretching surface with radiation and heat source/sink. J. Fluids (2015). https://doi.org/10.1155/2015/634186

    Article  MATH  Google Scholar 

  15. Sulochana, C., Sandeep, N.: Stagnation point flow and heat transfer behavior of Cu–water nanofluid towards horizontal and exponentially stretching/shrinking cylinders. Appl. Nanosci. (2016). https://doi.org/10.1007/s13204-015-0451-5

    Article  Google Scholar 

  16. Babu, M.J., Sandeep, N.: Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv. Powder Technol. 27, 2039–2050 (2016)

    Article  Google Scholar 

  17. Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment. Eur. Phys. J. Plus 132, 387–400 (2017)

    Article  Google Scholar 

  18. Mahmood, T., Shahzad, A., Iqbal, Z., Ahmed, J., Khan, M.: Computational modelling on 2D magnetohydrodynamic flow of Sisko fluid over a time dependent stretching surface. Results Phys. 7, 832–842 (2017)

    Article  Google Scholar 

  19. Sulochana, C., Samrat, S.P., Sandeep, N.: Boundary layer analysis of an incessant moving needle in MHD radiative nanofluid with joule heating. Int. J. Mech. Sci. (2017). https://doi.org/10.1016/j.ijmecsci.2017.05.006

    Article  Google Scholar 

  20. Sulochana, C., Samrat, S.P., Sandeep, N.: Magnetohydrodynamic radiative nanofluid flow over a rotating surface with Soret effect. Multidiscip. Model. Mater. Struct. (2017). https://doi.org/10.1108/mmms-05-2017-0042

    Article  Google Scholar 

  21. Sulochana, C., Samrat, S.P., Sandeep, N.: Thermal radiation effect on MHD nanofluid flow over a stretching sheet. Int. J. Eng. Res. Africa 23, 89–102 (2016). https://doi.org/10.4028/www.scientific.net/JERA.23.89

    Article  Google Scholar 

  22. Sulochana, C., Samrat, S.P., Sandeep, N.: Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation. Int. J. Eng. Res. Africa 20, 112–129 (2016). https://doi.org/10.4028/www.scientific.net/JERA.20.112

    Article  Google Scholar 

  23. Pham, T.V., Mitsoulis, E.: Entry and exit flows of Casson fluids. Can. J. Chem. Eng. 72, 1080–1084 (1994)

    Article  Google Scholar 

  24. Nadeem, S., Haq, R.U., Lee, C.: MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran. 19, 1550–1553 (2012)

    Article  Google Scholar 

  25. Shehzad, S.A., Hayat, T., Qasim, M., Asghar, S.: Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30, 187–195 (2013)

    Article  Google Scholar 

  26. Mukhopadhyay, S., Ranjan, P., Bhattacharyya, K., Layek, G.C.: Casson fluid flow over an unsteady stretching surface. Ain Shams Eng. J. 4, 933–938 (2013)

    Article  Google Scholar 

  27. Sharada, K., Shankar, B.: MHD mixed convection flow of a Casson fluid over an exponentially stretching surface with the effects of Soret, Dufour, thermal radiation and chemical reaction. World J. Mech. 5, 165–177 (2015)

    Article  Google Scholar 

  28. Animasaun, I.L., Adebile, E.A., Fagbade, A.I.: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J. Niger. Math. Soc. 35, 1–17 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Ibrahim, W., Makinde, O.D.: Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J. Aerosp. Eng. 29, 4015037 (2015)

    Article  Google Scholar 

  30. Abbas, Z., Sheikh, M., Motsa, S.S.: Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95, 12–20 (2016). https://doi.org/10.1016/j.energy.2015.11.039

    Article  Google Scholar 

  31. Mahdy, A.: Unsteady MHD slip flow of a non-Newtonian casson fluid due to stretching sheet with suction or blowing effect. J. Appl. Fluid Mech. 9, 785–793 (2016)

    Article  Google Scholar 

  32. Kumaran, G., Sandeep, N.: Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion. J. Mol. Liq. 233, 262–269 (2017). https://doi.org/10.1016/j.molliq.2017.03.031

    Article  Google Scholar 

  33. Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A.: Colloidal study of Casson fluid with homogeneous–heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017). https://doi.org/10.1016/j.jcis.2017.03.024

    Article  Google Scholar 

  34. Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 7, 2134–2152 (2017)

    Article  Google Scholar 

  35. Wakif, A., Boulahia, Z., Sehaqui, R.: Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non uniform internal heating. J. Nanofluids 6, 136–148 (2017)

    Article  Google Scholar 

  36. Hayat, T., Hussain, Z., Farooq, M., Alsaedi, A.: Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. J. Mol. Liq. 215, 749–755 (2016). https://doi.org/10.1016/j.molliq.2015.12.109

    Article  Google Scholar 

  37. Hayat, T., Hussain, Z., Alsaedi, A., Farooq, M.: Magnetohydrodynamic flow by a stretching cylinder with Newtonian heating and homogeneous–heterogeneous reactions. PLoS ONE 11, 1–23 (2016). https://doi.org/10.1371/journal.pone.0156955

    Article  Google Scholar 

  38. Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. J. Mol. Liq. 220, 49–55 (2016). https://doi.org/10.1016/j.molliq.2016.04.032

    Article  Google Scholar 

  39. Wakif, A., Boulahia, Z., Sehaqui, R.: Analytical and numerical study of the onset of electroconvection in a dielectric nanofluid saturated a rotating Darcy porous medium. Int. J. Adv. Comput. Sci. Appl. 7, 299–311 (2016)

    Google Scholar 

  40. Wakif, Z., Boulahia, M., Zaydan, M., Yadil, N., Sehaqui, R.: The power series method to solve a magneto-convection problem in a Darcy–Brinkman porous medium saturated by an electrically conducting nanofluid layer. Int. J. Innov. Appl. Stud. 14, 1048–1065 (2016)

    Google Scholar 

  41. Boulahia, Z., Wakif, A., Sehaqui, R.: Numerical study of mixed convection of the nanofluids in two-sided lid driven square cavity with a pair of triangular heating cylinders. J. Eng. (2016). https://doi.org/10.1155/2016/8962091

    Article  Google Scholar 

  42. Boulahia, Z., Wakif, A., Chamkha, A.J., Sehaqui, R.: Numerical study of natural and mixed convection in a square cavity filled by a Cu–water nanofluid with circular heating and cooling cylinders. Mech. Ind. 18, 502 (2017)

    Article  Google Scholar 

  43. Ramzan, M., Farooq, M., Hayat, T., Chung, J.D.: Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition. J. Mol. Liq. 221, 394–400 (2016). https://doi.org/10.1016/j.molliq.2016.05.091

    Article  Google Scholar 

  44. Hayat, T., Khan, M.I., Farooq, M., Yasmeen, T., Alsaedi, A.: Water–carbon nanofluid flow with variable heat flux by a thin needle. J. Mol. Liq. 224, 65 (2016). https://doi.org/10.1016/j.molliq.2016.10.069

    Article  Google Scholar 

  45. Hayat, T., Naseem, A., Farooq, M., Alsaedi, A.: Unsteady MHD three-dimensional flow with viscous dissipation. Eur. Phys. J. Plus (2013). https://doi.org/10.1140/epjp/i2013-13158-1

    Article  Google Scholar 

  46. Samrat, S.P., Sulochana, C., Ashwinkumar, G.P.: Impact of thermal radiation and chemical reaction on unsteady 2D flow of magnetic-nanofluids over an elongated plate embedded with ferrous nanoparticles. Front. Heat Mass Transf. 10, 1–8 (2018). https://doi.org/10.5098/hmt.10.31

    Article  Google Scholar 

  47. Wakif, A., Boulahia, Z., Sehaqui, R.: A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys. (2018). https://doi.org/10.1016/j.rinp.2018.01.066

    Article  Google Scholar 

  48. Prasad, P.D., Kiran, R.V.M.S.S., Varma, S.V.K.: Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption. Ain Shams Eng. J. (2016). https://doi.org/10.1016/j.asej.2016.04.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sulochana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{aligned} & r_{1} = \frac{{SS_{c} + \sqrt {(SS_{c} )^{2} + 4KrS_{c} } }}{2},\quad r_{2} = \frac{{SS_{c} + \sqrt {(SS_{c} )^{2} + 4(iw + Kr)S_{c} } }}{2}, \\ & r_{3} = \frac{{\Pr CS + \sqrt {(\Pr CS)^{2} + 4H} Q}}{2H},\quad r_{4} = \frac{{\Pr CS + \sqrt {(\Pr CS)^{2} + 4H(iwC + Q)} }}{2H}, \\ & r_{5} = \frac{{AS + \sqrt {(AS)^{2} + 4aD(M + {1 \mathord{\left/ {\vphantom {1 K}} \right. \kern-0pt} K}} )}}{2aD},\quad r_{6} = \frac{{AS + \sqrt {(AS)^{2} + 4aD(M + {1 \mathord{\left/ {\vphantom {1 K}} \right. \kern-0pt} K}} - iw)}}{2aD}, \\ & m_{1} = \frac{{ - r_{1}^{2} Du}}{{r_{1}^{2} H - r_{1} \Pr CS + Q}},\quad m_{2} = \frac{{ - Dur_{1}^{2} }}{{r_{2}^{2} H - r_{2} \Pr CS + (Q + \Pr Ciw)}}, \\ & m_{3} = \frac{ - BGr}{{Dar_{3}^{2} - ASr_{3} - (M + {1 \mathord{\left/ {\vphantom {1 {K)}}} \right. \kern-0pt} {K)}}}},\quad m_{4} = \frac{ - BGm}{{Dar_{1}^{2} - ASr_{1} - (M + {1 \mathord{\left/ {\vphantom {1 {K)}}} \right. \kern-0pt} {K)}}}}, \\ & m_{5} = \frac{ - BGm}{{Dar_{2}^{2} - ASr_{2} - (M + ({1 \mathord{\left/ {\vphantom {1 {K) - iw)}}} \right. \kern-0pt} {K) - iw)}}}},\quad m_{6} = \frac{ - BGm}{{Dar_{2}^{2} - ASr_{2} - (M + ({1 \mathord{\left/ {\vphantom {1 {K) - iw)}}} \right. \kern-0pt} {K) - iw)}}}} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samrat, S.P., Sulochana, C. & Ashwinkumar, G.P. Impact of Thermal Radiation on an Unsteady Casson Nanofluid Flow Over a Stretching Surface. Int. J. Appl. Comput. Math 5, 31 (2019). https://doi.org/10.1007/s40819-019-0606-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0606-2

Keywords

Navigation