Karakoc, S.B.G., Geyikli, T.: Numerical solution of the modified equal width wave equation. Int. J. Differ. Equ. 2012, 1–15 (2012)
MathSciNet
Article
Google Scholar
Essa, Y.M.A.: Multigrid method for the numerical soluton of the modified equal width wave equation. Appl. Math. 7, 1140–1147 (2016)
Article
Google Scholar
Gardner, L.R.T., Gardner, G.A.: Solitary waves of the regularised long-wave equation. J. Comput. Phys. 91(2), 441–459 (1990)
MathSciNet
Article
Google Scholar
Gardner, L.R.T., Gardner, G.A.: Solitary waves of the equal width wave equation. J. Comput. Phys. 101(1), 218–223 (1992)
MathSciNet
Article
Google Scholar
Morrison, P.J., Meiss, J.D., Cary, J.R.: Scattering of regularized-long-wave solitary waves. Physica D. Nonlinear Phenomena 11(3), 324–336 (1984)
MathSciNet
Article
Google Scholar
Gardner, L.R.T., Gardner, G.A., Geyikli, T.: The boundary forced MKdV equation. J. Comput. Phys. 113(1), 5–12 (1994)
MathSciNet
Article
Google Scholar
Abdulloev, Kh O., Bogolubsky, I.L., Makhankov, V.G.: One more example of inelastic soliton interaction. Phys. Lett. A 56(6), 427–428 (1976)
MathSciNet
Article
Google Scholar
Geyikli, T., Karakoc, S.B.G.: Septic B-spline collocation method for numerical solution of modified equal width wave equation. Appl. Math. 2(6), 739–749 (2011)
MathSciNet
Article
Google Scholar
Geyikli, T., Karakoc, S.B.G.: Petro-Galerkin method with cubic bsplines for solving the MEW equation. Bull. Belgian Math. Soc. Simon Stevin 19, 215–227 (2012)
MathSciNet
MATH
Google Scholar
Arora, R., Siddiqui, Md J., Singh, V.P.: Solution of modified equal width wave equation, its variant and non-homogeneous Burgers’ equation by RDT method. Am. J. Comput. Appl. Math. 1(2), 53–56 (2011)
Article
Google Scholar
Saka, B.: Algorithms for numerical solution of the modified equal width wave equation using collocation method. Math. Comput. Model. 45(9–10), 1117–2007 (2007)
MathSciNet
MATH
Google Scholar
Wazwaz, A.M.: The tanh and sine–cosine methods for a reliable treatment of the modified equal width wave equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006)
MathSciNet
Article
Google Scholar
Din, S.T.M., Yildirim, A., Berberler, M.E., Hosseini, M.M.: Numerical solution of the modified equal width wave equation. World Appl. Sci. J. 8(7), 792–798 (2010)
Google Scholar
Hassan, H.N.: An accurate numerical solution for the modified equal width wave equation using the Fourier pseudo-spectral method. J. Appl. Math. Phys. Lett. A 4, 1054–1067 (2016)
Article
Google Scholar
Esen, A., Kutluay, S.: Solitary wave solutions of the modified equal width wave equation. Commun. Nonlinear Sci. Numer. Simul. 13(8), 1538–1546 (2008)
MathSciNet
Article
Google Scholar
Wang, H., Chen, L., Wang, H.: Exact travelling wave solutions of the modified equal width wave equation via the dynamical system method. Nonlinear Anal. Differ. Equ. 4(1), 9–15 (2016)
MathSciNet
Article
Google Scholar
Sahoo, S., Ray, S.S.: Lie symmetry analysis and exact solutions of (3+1) dimensional Yu–Toda–Sasa–Fukuyama equation in mathematical physics. Comput. Math. Appl. 73, 253–260 (2017)
MathSciNet
Article
Google Scholar
Yang, S., Hua, C.: Lie symmetry reductions and exact solutions of a coupled KdV–Burgers equation. Appl. Math. Comput. 234, 579–583 (2014)
MathSciNet
MATH
Google Scholar
Wang, G., Kara, A.H., Fakhar, K., Guzman, J.V.: Group analysis. Exact solutions and conservation laws of a generalized fifth order KdV equation. Chaos Solitons Fractals 86, 8–15 (2016)
MathSciNet
Article
Google Scholar
Kumar, M., Kumar, R., Kumar, A.: Some more similarity solutions of the (2+1)-dimensional BLP system. Comput. Math. Appl. 70, 212–221 (2015)
MathSciNet
Article
Google Scholar
Kumar, M., Kumar, R., Kumar, A.: On similarity solutions of Zabolotskaya–Khokhlov equation. Comput. Math. Appl. 68, 454–463 (2014)
MathSciNet
Article
Google Scholar
Olver, P.J.: Applications of Lie Groups to Differential Equations, pp. 30–130. Springer, New York (1993)
Book
Google Scholar
Bluman, G., Cheviakov, A.: Applications of Symmetry Methods to Partial Differential Equations. Appl. Math. Sci., vol. 168, p. 417. Springer, New York (2010)
MATH
Google Scholar
Bluman, G.W., Cole, J.D.: Similarity Methods for Differential Equations. Springer, New York (1974)
Book
Google Scholar
Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)
MATH
Google Scholar
Goyal, N., Wazwaz, A.M., Gupta, R.K.: Applications of maple software to derive exact solutions of generalized fifth-order Korteweg–De Vries equation with time-dependent coefficients. Rom. Rep. Phys. 68(1), 99–111 (2016)
Google Scholar
Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)
MathSciNet
Article
Google Scholar
Wazwaz, A.M.: Partial Differential Equation and Solitary Wave Theory. Nonlinear Physical Science. Springer, New York (2009)
Book
Google Scholar
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. China Machine Press, Beijing (2004)
MATH
Google Scholar