Skip to main content
Log in

Theoretical Study of Oldroyd-B Visco-Elastic Fluid Flow Through Curved Pipes with Slip Effects in Polymer Flow Processing

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employed to simulate realistic transport of dilute polymeric solutions in curved channels. In order to linearize the momentum and constitutive equations, a perturbation method is used in which the ratio of radius of cross section to the radius of channel curvature is employed as the perturbation parameter. The intensity of secondary and main flows is mainly affected by the hoop stress and it is demonstrated in the present study that both the Weissenberg number (the ratio of elastic force to viscous force) and slip coefficient play major roles in determining the strengths of both flows. It is also shown that, as a result of an increment in slip coefficient, the position of maximum velocity markedly migrates away from the pipe center towards the outer side of curvature. Furthermore, results corresponding to Navier slip scenarios exhibit non-uniform distributions in both the main and lateral components of velocity near the wall which can notably vary from the inner side of curvature to the outer side. The present solution is also important in polymeric flow processing systems because of experimental evidence indicating that the no-slip condition can fail for these flows, which is of relevance to chemical engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Finlay, W.H.: Perturbation expansion and weakly nonlinear analysis for two-dimensional vortices in curved or rotating channels. Phys. Fluids A 1, 854–860 (1989)

    Article  MATH  Google Scholar 

  2. Hayat, T., Noreen, S., Alsaedi, A.: Effect of an induced magnetic field on peristaltic flow of non-Newtonian fluid in a curved channel. J. Mech. Med. Biol. 12, 1–26 (2012)

    Google Scholar 

  3. Hoque, M.M., Alam, M.M., Ferdows, M., Anwar Bég, O.: Numerical simulation of Dean number and curvature effects on magneto biofluid flow through a curved conduit. Proc. Inst. Mech. Eng. H J. Eng. Med. 227, 1155–1170 (2013)

    Article  Google Scholar 

  4. Keshavarz, M.Z., Kadeem, L.: 3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta. Med. Eng. Phys. 33, 315–324 (2011)

    Article  Google Scholar 

  5. Ali, N., Sajid, M., Abbas, Z., Javed, T.: Non-Newtonian fluid flow induced by peristaltic waves in a curved channel. Eur. J. Mech. B Fluids 29, 387–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kumar, V., Aggarwal, M., Nigam, K.D.P.: Mixing in curved tubes. Chem. Eng. Sci. 61, 5742–5753 (2006)

    Article  Google Scholar 

  7. Cheng, K.C., Akiyama, M.: Graetz problem in curved pipes with uniform wall heat flux. Appl. Sci. Res. 29, 401–418 (1974)

    Article  MATH  Google Scholar 

  8. Dean, W.R.: Note on the motion of fluid in a curved pipe. Philos. Mag. 4, 208–223 (1927)

    Article  MATH  Google Scholar 

  9. Dean, W.R.: The stream-line motion of fluid in a curved pipe. Philos. Mag. 5, 673–695 (1928)

    Article  Google Scholar 

  10. Eustice, J.: Experiments on stream-line motion in curved pipes. Proc. R. Soc. Lond. Ser. A 85, 119–131 (1911)

    Article  Google Scholar 

  11. Topakoglu, H.C.: Steady laminar flows of an incompressible viscous fluid in curved pipes. USSR J. Math. Mech. 16, 1321–1337 (1967)

    MATH  Google Scholar 

  12. Berger, S.A., Talbot, L., Yao, L.S.: Flow in curved pipes. Ann. Rev. Fluid Mech. 15, 461–512 (1983)

    Article  MATH  Google Scholar 

  13. Guan, X., Martonen, T.B.: Simulations of flows in curved tubes. Aerosol Sci. Technol. 26, 485–504 (1997)

    Article  Google Scholar 

  14. Naphon, P., Wongwises, S.: A review of flow and heat transfer characteristics in curved tubes. Renew. Sustain. Energy Rev. 10, 463–490 (2006)

    Article  Google Scholar 

  15. Hooman, K., Hooman, F., Famouri, M.: Scaling effects for flow in micro-channels: variable property, viscous heating, velocity slip, and temperature jump. Int. Commun. Heat Mass Transf. 36, 192–196 (2009)

    Article  Google Scholar 

  16. Khan, W.A., Yovanovich, M.M.: Analytical modeling of fluid flow and heat transfer in microchannel/nanochannel heat sinks. AIAA J. Thermophys. Heat Transf. 22, 352–359 (2008)

    Article  Google Scholar 

  17. Duan, Z., Muzychka, Y.S.: Slip flow heat transfer in annular microchannels with constant heat flux. ASME J. Heat Transf. 130, 1–8 (2008)

    Google Scholar 

  18. Tamayol, A., Bahrami, M.: Laminar flow in microchannels with non-circular cross section. ASME J. Fluids Eng. 132, 1–9 (2010)

    Google Scholar 

  19. Norouzi, M., Davoodi, M., Anwar Bég, O., Joneidi, A.A.: Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow. Int. J. Therm. Sci. 69, 61–69 (2013)

    Article  Google Scholar 

  20. Norouzi, M., Kayhan, M.H., Shu, C., Nobari, M.R.H.: Flow of second-order fluid in a curved duct with square cross-section. J. Non-Newtonian Fluid Mech. 165, 323–339 (2010)

    Article  MATH  Google Scholar 

  21. Norouzi, M., Davoodi, M., Anwar Bég, O.: An analytical solution for convective heat transfer of viscoelastic flows in rotating curved pipes. Int. J. Therm. Sci. 90, 90–111 (2015)

    Article  Google Scholar 

  22. Fan, Y., Tanner, R.I., Phan-Thien, N.: Fully developed viscous and viscoelastic flows in curved pipes. J. Fluid Mech. 440, 327–357 (2001)

    Article  MATH  Google Scholar 

  23. Jitchote, W., Robertson, A.M.: Flow of second order fluid in curved pipe. J. Non-Newtonian Fluid Mech. 90, 91–116 (2000)

    Article  MATH  Google Scholar 

  24. Robertson, A.M., Muller, S.J.: Flow of Oldroyd-B fluids in curved pipes of circular and annular cross-section. Int. J. Non-Linear Mech. 31, 3–20 (1996)

    Article  MATH  Google Scholar 

  25. Hsu, C.F., Patankar, S.V.: Analysis of laminar non-Newtonian flow and heat transfer in curved tubes. AIChemE J. 28, 610–616 (2004)

    Article  Google Scholar 

  26. Phan-Thien, N., Zheng, R.: Viscoelastic flow in a curved duct: a similarity solution for the Oldroyd-B fluid. ZAMP J. Appl. Math. Phys. 41, 766–781 (1990)

    MATH  Google Scholar 

  27. Zhang, M., Shen, X., Ma, J., Zhang, B.: Theoretical analysis of convective heat transfer of Oldroyd-B fluids in a curved pipe. Int. J. Heat Mass Transf. 51, 661–671 (2008)

    Article  MATH  Google Scholar 

  28. Bowen, P.J., Davies, A.R., Walters, K.: On viscoelastic effects in swirling flows. J. Non-Newtonian Fluid Mech. 38, 113–126 (1991)

    Article  MATH  Google Scholar 

  29. Ebadian, M.A.: Rate of growth in a curved concentric pipe of circular cross-section. ASME J. Appl. Mech. 57, 1073–1075 (1990)

    Article  Google Scholar 

  30. Karahalios, G.T., Petrakis, M.A.: Fully developed steady flow in a slightly curved annular pipe. Acta Mech. 88, l–10 (1991)

    Article  Google Scholar 

  31. Hatzikiriakos, S.G.: Wall slip of molten polymers. Prog. Polym. Sci. 37(4), 624–643 (2012)

    Article  Google Scholar 

  32. Kaoullas, G., Georgiou, G.C.: Newtonian Poiseuille flows with slip and non-zero slip yield stress. J. Non-Newtonian Fluid Mech. 197, 24–30 (2013)

    Article  Google Scholar 

  33. Georgiou, G.C., Kaoullas, G.: Newtonian flow in a triangular duct with slip at the wall. Meccanica 48(10), 2577–2583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Damianou, Y., Philippou, M., Kaoullas, G., Georgiou, G.C.: Cessation of viscoplastic Poiseuille flow with wall slip. J. Non-Newtonian Fluid Mech. 203, 24–37 (2014)

    Article  Google Scholar 

  35. Ferrás, L.L., Afonso, A.M., Alves, M.A., Nóbrega, J.M., Pinho, F.T.: Annular flow of viscoelastic fluids: analytical and numerical solutions. J. Non-Newtonian Fluid Mech. 212, 80–91 (2014)

    Article  Google Scholar 

  36. Ferrás, L.L., Nóbrega, J.M., Pinho, F.T.: Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip. J. Non-Newtonian Fluid Mech. 175, 76–88 (2012)

    Article  Google Scholar 

  37. Joshi, Y.M., Denn, M.M.: Planar contraction flow with a slip boundary condition. J. Non-Newtonian Fluid Mech. 114, 185–195 (2003)

    Article  MATH  Google Scholar 

  38. Siddiqui, A.M., Sohail, A., Naqvi, S., Haroon, T.: Analysis of Stokes flow through periodic permeable tubules. Alex. Eng. J. 56(1), 105–113 (2017)

    Article  Google Scholar 

  39. Tripathi, D., Anwar Bég, O., Curiel-Sosa, J.: Homotopy semi-numerical simulation of peristaltic flow of generalized Oldroyd-B fluids with slip effects. Comput. Methods Biomech. Biomed. Eng. 17, 433–442 (2014)

    Article  Google Scholar 

  40. Tripathi, D., Anwar Bég, O.: Mathematical modelling of heat transfer effects on swallowing dynamics of viscoelastic flood bolus through the human esophagus. Int. J. Therm Sci. 70, 41–53 (2013)

    Article  Google Scholar 

  41. Bird, R.B., Armstrong, R.C., Hassager, O., Curtiss, C.F.: Dynamics of Polymeric Liquids. Volume-1, Fluid Mechanics. Wiley, New York (1977)

    Google Scholar 

  42. James, D.F.: Boger fluids. Ann. Rev. Fluid Mech. 41, 129–142 (2009)

    Article  MATH  Google Scholar 

  43. Abed, W.M., Richard, D.W., David, J.C.D., Robert, J.P.: Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel. Int. J. Heat Mass Transf. 88, 790–802 (2015)

    Article  Google Scholar 

  44. Zografos, K., Pimenta, F., Alves, M.A., Oliveira, M.S.N.: Microfluidic converging/diverging channels optimized for homogeneous extensional deformation. Biomicrofluidics 10(4), 043508-1–043508-20 (2016)

    Article  Google Scholar 

  45. Satish, G.K., Srinivas, G., Li, D., Stephane, C., Michael, R.K.: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, Amsterdam (2005)

    Google Scholar 

  46. Navier, C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr. 1823, 389–416 (1823)

    Google Scholar 

  47. Abed, W.M., Richard, D.W., David, J.C.D., Robert, J.P.: Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel. J. Non-Newtonian Fluid Mech. 231, 68–78 (2016)

    Article  Google Scholar 

  48. Xu, H., Clarke, A., Rothstien, J.P., Poole, R.J.: Sliding viscoelastic drops on slippery surfaces. Appl. Phys. Lett. 108, 241602-1–241602-5 (2016)

    Google Scholar 

  49. Mashelkar, R.A., Devarajan, G.V.: Secondary flows of non-Newtonian fluids: part I-laminar boundary layer flow of a generalized non-Newtonian fluid in a coiled tube, part II – frictional losses in laminar flow of purely viscous and viscoelastic fluids through coiled tubes. Trans. Inst. Chem. Eng. 54, 100–114 (1976)

    Google Scholar 

  50. Bhatti, M.M., Rashidi, M.M.: Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)

    Article  Google Scholar 

  51. Bhatti, M.M., Zeeshan, A., Ellahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Professor Morton Denn of the Levich Institute, University of Delaware, USA, for his invaluable help and guidance regarding the present research. Furthermore, the authors acknowledge the comments of both reviewers which have served to improve the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MD. Shamshuddin.

Ethics declarations

The ethical standards are considered in writing this paper.

Conflict of interest

The authors have no conflict of interest with anybody or any organizations/companies.

Appendix

Appendix

Due to the quasi-linear, coupled nature of the momentum conservation equations, a perturbation method is used. The perturbation parameter in the momentum equations is considered to be the curvature ratio (\( \delta = \frac{r}{R} \)). Considering the rectilinear form of the flow distribution in a straight pipe and consequently the absence of secondary flow in this situation (\( \psi^{(0)} = 0 \)), stream functions start from the first order onwards. The appropriate series forms for the stress tensor, stream function and main velocity are:

$$ w = \sum\limits_{n = 0}^{\infty } {\delta^{n} } w^{(n)} (r,\phi ),\quad \psi = \sum\limits_{n = 1}^{\infty } {\delta^{n} } \psi^{(n)} (r,\phi ),\quad \tau = \sum\limits_{n = 0}^{\infty } {\delta^{n} } \tau^{(n)} (r,\phi ) $$
(A-1)

Introducing (A-1) into the momentum equation and arranging coefficients of \( \delta^{0} \), the first characteristic equation of the primary (main) velocity is obtained as:

$$ \frac{{r^{4} \partial^{2} w^{(0)} }}{{\partial r^{2} }} + 4r^{4} + r^{2} \frac{{\partial^{2} w^{(0)} }}{{\partial^{2} \theta }} + r^{3} \frac{{\partial w^{(0)} }}{\partial r} = 0 $$
(A-2)

The zero-order solution of the main velocity \( w^{(0)} \) with respect to the slip condition around the wall is:

$$ w^{(0)} = 1 - r^{2} + 2\beta_{v} $$
(A-3)

Upon substituting Eq. (A-3) into the Oldroyd-B Constitutive Equation the zeroth order solution os the stress components can be calculated as:

$$ \tau_{rs}^{(0)} = \frac{{\partial w^{(0)} }}{\partial r},\quad \tau_{\phi s}^{(0)} = \frac{1}{r}\frac{{\partial w^{(0)} }}{\partial \phi },\quad \tau_{ss}^{(0)} = 2We\beta \left( {\left( {\frac{{\partial w^{(0)} }}{\partial r}} \right)^{2} + \left( {\frac{1}{r}\frac{{\partial w^{(0)} }}{\partial \phi }} \right)^{2} } \right) $$
(A-4)

After collecting the coefficient of \( \delta \) in Eqs. 17 and 16, the following equation can be obtained, respectively:

$$ \begin{aligned} \left( {2\text{Re} w^{(0)} \frac{{\partial w^{(0)} }}{\partial r} - \frac{{\partial \tau_{ss}^{(0)} }}{\partial r}} \right)\sin \phi & = - \frac{1}{r}\frac{{\partial^{2} \tau_{rr}^{(1)} }}{\partial r\partial \phi } - \frac{1}{{r^{2} }}\frac{{\partial^{2} \tau_{rr}^{(1)} }}{\partial \phi } + \frac{1}{r}\frac{{\partial^{2} \tau_{\phi \phi }^{(1)} }}{\partial r\partial \phi } + \frac{1}{{r^{2} }}\frac{{\partial \tau_{\phi \phi }^{(1)} }}{\partial \phi } \\ & \quad + \frac{{\partial^{2} \tau_{r\phi }^{(1)} }}{{\partial r^{2} }} + \frac{3}{r}\frac{{\partial \tau_{r\phi }^{(1)} }}{\partial r} - \frac{1}{{r^{2} }}\frac{{\partial^{2} \tau_{r\phi }^{(1)} }}{{\partial \phi^{2} }} \\ \end{aligned} $$
(A-5)
$$ \begin{aligned} \nabla^{2} w^{(1)} & = 4\cos \phi - Re\left( {\frac{{\partial w^{(0)} }}{\partial r}\frac{{\partial \psi^{(1)} }}{\partial \phi }} \right) - We\beta \frac{1}{r}\left( {\frac{{\partial^{3} w^{(0)} }}{{\partial r^{3} }}\frac{{\partial \psi^{(1)} }}{\partial \phi } - \frac{{\partial^{2} w^{(0)} }}{{\partial r^{2} }}\frac{{\partial^{2} \psi^{(1)} }}{\partial r\partial \phi } + 3\frac{1}{r}\frac{{\partial w^{(0)} }}{{\partial r^{2} }}\frac{{\partial \psi^{(1)} }}{\partial \phi }} \right. \\ & \quad \left. - \frac{{\partial w^{(0)} }}{\partial r}\frac{{\partial^{3} \psi^{(1)} }}{{\partial \phi \partial r^{2} }} + \frac{1}{r}\frac{{\partial w^{(0)} }}{\partial r}\frac{{\partial^{2} \psi^{(1)} }}{\partial \phi \partial r} - 3\frac{1}{{r^{2} }}\frac{{\partial w^{(0)} }}{\partial r}\frac{{\partial \psi^{(1)} }}{\partial \phi } - \frac{{\partial w^{(0)} }}{\partial r}\frac{{\partial^{3} \psi^{(1)} }}{{\partial \phi^{3} }}\right) \\ \end{aligned} $$
(A-6)

Using the perturbation series presented in Eq. (A-1) in constitutive equation, expressions for first order of stress tensor components can be obtained as:

$$ \begin{aligned} & \tau_{rr}^{(1)} = - 2\frac{\partial }{\partial r}\left( {\frac{1}{r}\frac{{\partial \psi^{(1)} }}{\partial \phi }} \right),\quad \tau_{\phi \phi }^{(1)} = 2\frac{\partial }{\partial r}\left( {\frac{1}{r}\frac{{\partial \psi^{(1)} }}{\partial \phi }} \right), \\ & \tau_{r\phi }^{(1)} = \frac{{\partial^{2} \psi^{(1)} }}{{\partial r^{2} }} - \frac{1}{r}\frac{{\partial \psi^{(1)} }}{\partial \phi } - \frac{1}{{r^{2} }}\frac{{\partial^{2} \psi^{(1)} }}{{\partial \phi^{2} }} \\ \end{aligned} $$
(A-7)

Solution to the equation (A-5 and A-6), considering Eq. (A-7) will be in the form of \( \psi^{(1)} = g_{1} (r)\sin \phi \) and \( w^{(1)} = f_{1} (r)\cos \phi \) which the function \( g_{1} (r) \) and \( f_{1} (r) \) are calculated using the slip boundary condition.

$$ \begin{aligned} g_{1} (r) & = - (1/48)r^{5} \text{Re} - (1/12)r^{5} We\beta - (1/24)r^{5} \beta_{v} \text{Re} + (1/288)\text{Re} r^{7} - (1/72)r\text{Re} /(1 + 2\beta_{v} ) \\ & \quad - (1/9)r\beta_{v} \text{Re} /(1 + 2\beta_{v} ) + (2/3)r^{3} \beta_{v} We\beta /(1 + 2\beta_{v} ) + (1/3)r^{3} \beta_{v}^{2} \text{Re} /(1 + 2\beta_{v} ) \\ & \quad - (1/12)rWe\beta /(1 + 2\beta_{v} ) - (1/2)r\beta_{v} We \cdot \beta /(1 + 2\beta_{v} ) - (1/4)r\beta_{v}^{2} \text{Re} /(1 + 2\beta_{v} ) \\ & \quad + (1/32)r^{3} \text{Re} /(1 + 2\beta_{v} ) + (1/6)r^{3} We\beta /(1 + 2\beta_{v} ) + (3/16)r^{3} \beta_{v} \text{Re} /(1 + 2\beta_{v} ) \\ \end{aligned} $$
(A-8)
$$ \begin{aligned} f_{1} (r) & = 1920r^{5} We^{2} \beta^{2} /(23040\beta_{v} + 11520) - 40r^{7} \text{Re}^{2} \beta_{v} /(23040\beta_{v} + 11520) \\ & \quad + 320r^{5} \text{Re}^{2} \beta_{v}^{2} /(23040\beta_{v} + 11520) + (11/32)r\beta We\text{Re} \beta_{v} /(2\beta_{v}^{2} + 3\beta_{v} + 1) \\ & \quad + 640r^{5} \beta We\text{Re} /(23040\beta_{v} + 11520) + 3840r^{5} \beta_{v} We^{2} \beta^{2} /(23040\beta_{v} + 11520) \\ & \quad + 2560r^{5} \beta We\text{Re} \beta_{v} /(23040\beta_{v} + 11520) - 5760r^{3} \beta We\text{Re} \beta_{v} /(23040\beta_{v} + 11520) \\ & \quad - 120r^{7} \beta We\text{Re} /(23040\beta_{v} + 11520) - (5/3)rWe^{2} \beta_{v}^{2} \beta^{2} /(2\beta_{v}^{2} + 3\beta_{v} + 1) \\ & \quad - 960r^{3} \beta We\text{Re} /(23040\beta_{v} + 11520) + 30r^{5} \text{Re}^{2} /(23040\beta_{v} + 11520) \\ & \quad - (5/6)rWe\beta \beta_{v}^{3} \text{Re} /(2\beta_{v}^{2} + 3\beta_{v} + 1) - 10r^{7} \text{Re}^{2} /(23040\beta_{v} + 11520) \\ & \quad - (3/4)r/(2\beta_{v}^{2} + 3\beta_{v} + 1) + 4r\beta_{v}^{3} /(2\beta_{v}^{2} + 3\beta_{v} + 1) - (5/2)r\beta_{v}^{2} \\ & \quad /(2\beta_{v}^{2} + 3\beta_{v} + 1) - (15/4)r\beta_{v} /(2\beta_{v}^{2} + 3\beta_{v} + 1) + (19/11520)r\text{Re}^{2} \\ & \quad /(2\beta_{v}^{2} + 3\beta_{v} + 1) + 8640r^{3} /(23040\beta_{v} + 11520) + r^{9} \text{Re}^{2} /(23040\beta_{v} + 11520) \\ & \quad - 40r^{3} \text{Re}^{2} /(23040\beta_{v} + 11520) + 17280r^{3} \beta_{v} /(23040\beta_{v} + 11520) - 320r^{3} \text{Re}^{2} \beta_{v} \\ & \quad /(23040\beta_{v} + 11520) + (1/6)rWe^{2} \beta^{2} /(2\beta_{v}^{2} + 3\beta_{v} + 1) + (127/1920)r\text{Re}^{2} \beta_{v}^{2} \\ & \quad /(2\beta_{v}^{2} + 3\beta_{v} + 1) + (209/11520)r\text{Re}^{2} \beta_{v} /(2\beta_{v}^{2} + 3\beta_{v} + 1) + (7/96)r\text{Re}^{2} \beta_{v}^{3} \\ & \quad /(2\beta_{v}^{2} + 3\beta_{v} + 1) - 7680r^{3} \beta We\text{Re} \beta_{v}^{2} /(23040\beta_{v} + 11520) - 3840r^{3} We^{2} E^{2} \\ & \quad /(23040\beta_{v} + 11520) + 2r^{9} \text{Re}^{2} \beta_{v} /(23040\beta_{v} + 11520) + 180r^{5} \text{Re}^{2} \beta_{v} /(23040\beta_{v} + 11520) \\ & \quad - 15360r^{3} \beta_{v} We^{2} \beta^{2} /(23040\beta_{v} + 11520) - 40r^{7} \text{Re}^{2} \beta_{v}^{2} /(23040\beta_{v} + 11520) \\ & \quad + (11/288)r\beta We\text{Re} /(2\beta_{v}^{2} + 3\beta_{v} + 1) + (77/144)r\beta We\text{Re} \beta_{v}^{2} /(2\beta_{v}^{2} + 3\beta_{v} + 1) \\ & \quad - 720r^{3} \text{Re}^{2} \beta_{v}^{2} /(23040\beta_{v} + 11520) + (7/6)r\beta_{v} We^{2} \beta^{2} /(2\beta_{v}^{2} + 3\beta_{v} + 1) \\ & \quad + 1920r^{5} \beta We\text{Re} \beta_{v}^{2} /(23040\beta_{v} + 11520) - 240r^{7} \beta We\text{Re} \beta_{v} /(23040\beta_{v} + 11520) \\ \end{aligned} $$
(A-9)

The same method can be used to drive the characteristic equation of order 2 which due to large size of equations are not presented here but are included once results are reported. The solution to the characteristic equation of order two are in the forms of [23, 24]:

$$ \psi^{(2)} = g_{2} (r)\sin (2\phi ) $$
(A-10)
$$ w^{(2)} = f_{20} (r) + f_{22} (r)\cos (2\phi ) $$
(A-11)

Solution of Flow Rate

The dimensionless flow rate through the pipe can be simply presented as:

$$ Q = \int\limits_{0}^{2\pi } {\int\limits_{0}^{1} {wrdrd\phi } } $$
(A-12)

where w (axial velocity) is considered to be in the form of a perturbation expansion as:

$$ w = w^{(0)} (r) + \delta f_{1} (r)\cos \phi + \delta^{2} \left( {f_{20} (r) + f_{22} (r)\cos 2\phi } \right) $$
(A-13)

Substituting the solutions of velocity components into Eqs. (A-12, A-13), the following equation for the flow rate is readily arrived at:

$$ \tilde{Q}_{s} = \frac{{\pi r_{o}^{2} }}{8\eta }G $$
(A-14)

where \( Q_{s} \) is the dimensionless flow rate in a straight stationary pipe with the same pressure gradient and this value is equal to \( \pi /2 \). The magnitude of this parameter is:

$$ \frac{{Q_{c} }}{{Q_{s} }} = 1 + \delta^{2} \left( {\begin{array}{*{20}l} {(1/4180377600)\left( {87091200\delta^{2} + 3948134400\delta^{2} \beta_{v} We^{2} \beta^{2} + 1393459200\delta^{2} \beta_{v}^{2} We^{2} \beta^{2} } \right.} \hfill \\ { - 1281982464000\delta^{2} \beta_{v}^{5} + 232243200\delta^{2} We^{2} \beta^{2} - 51495\text{Re}^{4} \delta^{2} \beta_{v} - 57625152\text{Re}^{4} \delta^{2} \beta_{v}^{5} } \hfill \\ { - 5719092\text{Re}^{4} \delta^{2} \beta_{v}^{3} + 328043520\delta^{2} We\beta \text{Re} \beta_{v} - 62815680\text{Re}^{4} \delta^{2} \beta_{v}^{6} - 24730232\text{Re}^{4} \delta^{2} \beta_{v}^{4} } \hfill \\ { + 199938170880\delta^{2} We\beta \text{Re} \beta_{v}^{5} + 2905943040\delta^{2} We\beta \text{Re} \beta_{v}^{2} - 3570739200\delta^{2} \beta_{v} } \hfill \\ { - 740738\text{Re}^{4} \delta^{2} \beta_{v}^{2} - 20620800\text{Re}^{4} \delta^{2} \beta_{v}^{7} - 1541\text{Re}^{4} \delta^{2} - 2661120\text{Re}^{2} \delta^{2} + 535088332800\delta^{2} \beta_{v}^{7} } \hfill \\ { + 17418240\delta^{2} We\beta \text{Re} - 45635788800\delta^{2} \beta_{v}^{2} + 484923801600\beta_{v}^{2} + 191368396800\delta^{2} \beta_{v}^{4} We^{2} \beta^{2} } \hfill \\ { - 17805312000\text{Re}^{2} \delta^{2} \beta_{v}^{5} + 1688872550400\beta_{v}^{3} - 12831436800\text{Re}^{2} \delta^{2} \beta_{v}^{6} - 60117120\text{Re}^{2} \delta^{2} \beta_{v} } \hfill \\ { + 30965760\delta^{2} We^{4} \beta^{4} + 20437401600\delta^{2} \beta_{v}^{3} We^{2} \beta^{2} - 256744857600.\delta^{2} \beta_{v}^{3} + 9289728000\delta^{2} \beta_{v}^{2} We^{4} \beta^{4} } \hfill \\ { + 44714557440\delta^{2} \beta_{v}^{3} We^{4} \beta^{4} - 170311680\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{7} + 24319733760\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v}^{3} } \hfill \\ { + 1708462080\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{6} - 267544166400\delta^{2} \beta We\text{Re} \beta_{v}^{7} + 3068280\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{2} } \hfill \\ { + 3893944320\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v}^{2} - 575648640\text{Re}^{2} \delta^{2} \beta_{v}^{2} - 10013068800\text{Re}^{2} \delta^{2} \beta_{v}^{4} } \hfill \\ { + 596175840\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{4} - 535088332800\delta^{2} \beta_{v}^{6} We^{2} \beta^{2} - 41760\text{Re}^{3} \delta^{2} We\beta_{v} \beta } \hfill \\ { + 1765077120\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{5} + 79246080\text{Re}^{3} \delta^{2} We\beta \beta_{v}^{3} - 11147673600\delta^{2} \beta_{v}^{5} We^{2} \beta^{2} } \hfill \\ { - 3091253760\text{Re}^{2} \delta^{2} \beta_{v}^{3} + 15809932800\text{Re}^{2} \delta^{2} \beta_{v}^{4} We^{2} \beta^{2} + 17644677120\delta^{2} We\beta \text{Re} \beta_{v}^{3} } \hfill \\ { + 91143843840\delta^{2} We\beta \text{Re} \beta_{v}^{4} + 42294528000\text{Re}^{2} \delta^{2} \beta_{v}^{5} We^{2} \beta^{2} + 321052999680\delta^{2} \beta_{v}^{5} We^{4} \beta^{4} } \hfill \\ { + 245744271360\delta^{2} \beta_{v}^{4} We^{4} \beta^{4} + 3240\text{Re}^{3} \delta^{2} We\beta + 774144000\delta^{2} \beta_{v} We^{4} \beta^{4} + 27136800\text{Re}^{2} \delta^{2} \beta_{v} We^{2} \beta^{2} } \hfill \\ { + 444528000\text{Re}^{2} \delta^{2} \beta_{v}^{2} We^{2} \beta^{2} + 309162147840\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v}^{6} + 74317824000\text{Re}^{2} \delta^{2} \beta_{v}^{7} We^{2} \beta^{2} } \hfill \\ { + 82585681920\text{Re}^{2} \delta^{2} \beta_{v}^{6} We^{2} \beta^{2} + 2942985830400\beta_{v}^{5} + 10644480\text{Re} \delta^{2} We^{3} \beta^{3} + 1070176665600\beta_{v}^{6} } \hfill \\ { + 995040\text{Re}^{2} \delta^{2} We^{2} \beta^{2} - 401316249600\delta^{2} \beta_{v}^{6} + 97557626880\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v}^{4} + 4180377600} \hfill \\ { + 281594880\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v} + 291325870080\text{Re} \delta^{2} We^{3} \beta^{3} \beta_{v}^{5} + 3697511040\text{Re}^{2} \delta^{2} \beta_{v}^{3} We^{2} \beta^{2} } \hfill \\ { + 3143643955200\beta_{v}^{4} + 5573836800\delta^{2} \beta We\text{Re} \beta_{v}^{6} + 71066419200\beta_{v} } \hfill \\ {\left. { - 834682060800\delta^{2} \beta_{v}^{4} } \right)/\left( {160\beta_{v}^{4} + 64\beta_{v}^{5} + 148\beta_{v}^{3} + 64\beta_{v}^{2} + 13\beta_{v} + 1} \right)} \hfill \\ \end{array} } \right) $$
(A-15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norouzi, M., Davoodi, M., Anwar Bég, O. et al. Theoretical Study of Oldroyd-B Visco-Elastic Fluid Flow Through Curved Pipes with Slip Effects in Polymer Flow Processing. Int. J. Appl. Comput. Math 4, 108 (2018). https://doi.org/10.1007/s40819-018-0541-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0541-7

Keywords

Navigation