Pathogen Induced Infection and Its Control by Vaccination: A Mathematical Model for Cholera Disease

Abstract

In this paper, a mathematical model is proposed to study the spread of pathogen-induced cholera disease and its control by vaccination. It is assumed in the model that cholera vaccine-induced immunity has a temporary effect and imperfect dose of vaccine does not protect the recipients. From the model, a threshold for the disease dynamics the vaccinated reproduction number \(R_V \) is derived, which is compared with the basic reproduction number \( R_0 \) for without vaccination system. It has been shown that the disease will tend to extinction when \( R_V < 1 \). The disease-free equilibrium point is asymptotically stable when \( R_V < 1 \) and unstable when \( R_V > 1 \). Further, we have also proved that a unique endemic equilibrium point exists when \( R_V > 1 \). Also used Pontryagin Minimum Principle to find out the optimal rate of vaccination and death rate of pathogen population for the control of cholera disease. Sensitivity analysis of system parameters is performed to show their relative importance to disease transmission and prevalence. Finally, numerical simulations are provided to support the analytical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Azman, A.S., Rudolph, K.E., Cummings, D., Lessler, J.: The incubation period of cholera: a systematic review. J. Infect. 66(5), 432–438 (2013)

    Article  Google Scholar 

  2. 2.

    Braks, M.A., de Roda Husman, A.M.: Dimensions of effects of climate change on water-transmitted infectious diseases. Air Water Borne Dis. 2(1), 2 (2013)

    Google Scholar 

  3. 3.

    Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–96 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Clemens, J., Harris, J., Khan, M., Kay, B., Yunus, M., Svennerholm, A.: Field trial of oral cholera vaccines in bangladesh. Lancet 2(8499), 124–127 (1986)

    Article  Google Scholar 

  5. 5.

    Codeco, C.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)

    Article  Google Scholar 

  6. 6.

    Diekmann, O., Heesterbeek, J., Metz, J.: On the definition and the computation of the basic reproduction ratio \(r_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Epstein, P.R., Ford, T.E., Colwell, R.R.: Cholera and the environment. Lancet 342, 1216–1219 (1993)

    Article  Google Scholar 

  8. 8.

    Funari, E., Manganelli, M., Sinisi, L.: Impact of climate change on water-borne diseases. Ann. Ist. Super. Sanita 48(4), 473–487 (2012)

    Article  Google Scholar 

  9. 9.

    Hartley, D.M., Morris, J.G., Smith, D.L.: Hyper infectivity: a critical element in the ability of V. cholerae to cause epidemics? Plos Med. 3, 63–69 (2006)

    Article  Google Scholar 

  10. 10.

    Heffernan, J., Smith, R., Wahl, L.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005)

    Article  Google Scholar 

  11. 11.

    Jeuland, M., Whittingtona, D.: Cost–benefit comparisons of investments in improved water supply and cholera vaccination programs. Vaccine 27, 3109–3120 (2009)

    Article  Google Scholar 

  12. 12.

    Lemos-Paiao, A.P., Cristiana, J.S., Delfim, F.T.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318, 168–180 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Lenhart, S., Wortman, J.: Optimal Control Applied to Biological Models. Taylor and Francis, Boca Raton (2007)

    Google Scholar 

  14. 14.

    Mahoney, R., Maynard, J.: The introduction of new vaccines into developing countries. Vaccine 17, 646–652 (1999)

    Article  Google Scholar 

  15. 15.

    Meili, L., Junling, M., van den Driessche, P.: Model for disease dynamics of a waterborne pathogen on a random network. Math. Biol. 71(4), 961–977 (2014)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D .L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreak in Zimbabwe. Sci. Rep. 108, 8767–8772 (2011)

    Google Scholar 

  17. 17.

    Mukandavire, Z., Mutasa, F., Hove-Musekwa, S., Dube, S., Tchuenche, J.: Mathematical analysis of a cholera model with carriers: assessing the effects of treatment, chapt. 4. In: Mathematical Biology Research Trends, pp. 109–145. Nova Science Publisher, Inc. (2008)

  18. 18.

    Mukandavire, Z., Smith, D.L., Morris Jr., J.G.: Cholera in haiti: reproductive numbers and vaccination coverage estimates. Sci. Rep. 3(997), 1–8 (2013)

    Google Scholar 

  19. 19.

    Neilan, R., Schaefer, E., Gaff, H., Fister, H., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72(8), 2004–18 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Njagarah, J.B.H., Nyabadza, F.: Modelling optimal control of cholera in communities linked by migration. Comput. Math. Methods Med. 2015, 1–12 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Pandey, P.K., Kass, P.H., Soupir, M.L., Biswas, S., Singh, V.P.: Contaminationof water resources by pathogenic bacteria. AMB Express 4(51), 1–16 (2014)

    Google Scholar 

  22. 22.

    Park, K.: Preventive and Social Medicine. M/S Banarsi Das Bhanot Publishers, Jabalpur (2005)

    Google Scholar 

  23. 23.

    Pascual, M., Chaves, L., Cash, B., Rodo, X., Yunus, M.: Predicting endemic cholera: the role of climate variability and disease dynamics. Clim. Res. 36, 131–140 (2008)

    Article  Google Scholar 

  24. 24.

    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  25. 25.

    Robertson, S.L., Eisenberg, M.C., Tien, J.H.: Heterogeneity in multiple transmission pathways: modeling the spread of cholera and other waterborne disease in networks with a common water source. J. Biol. Dyn. 7, 254–275 (2013)

    Article  Google Scholar 

  26. 26.

    Sanches, R.P., Claudia, P.F., Kraenkel, R.A.: The role of immunity and seasonality in cholera epidemics. Bull. Math. Biol. 73, 2916–2931 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Sanchez, J., Vasquez, B.: Protective efficacy of oral whole-cell/recombinant-bsubunit cholera vaccine in peruvian military. Lancet 344(8932), 1273–1276 (1994)

    Article  Google Scholar 

  28. 28.

    Shuai, Z., van den Driessche, P.: Global dynamics of cholera models with differential infectivity. Math. Biosci. 234, 118–126 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Sun, G.-Q., Xie, J.-H., Huang, S.-H., Jin, Z., Li, M.-T., Liu, L.: Transmission dynamics of cholera: mathematical modeling and control strategies. Commun. Nonlinear Sci. Numer. Simul. 45, 235–244 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Tchuenche, J.M., Mwasa, A.: Mathematical analysis of a cholera model with public health interventions. Biosystems 105, 190–200 (2011)

    Article  Google Scholar 

  31. 31.

    Tian, J.P., Wang, J.: Global stability for cholera epidemic models. Math. Biosci. 232, 31–41 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Tien, J.H., Earn, D.J.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–33 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    van den Driesche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for the compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Wang, J., Modnak, C.: Modeling cholera dynamics with controls. Can. Appl. Math. Q. 19(3), 255–273 (2011)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Wang, Y., Cao, J.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput. 237, 474–488 (2014)

    MathSciNet  MATH  Google Scholar 

  36. 36.

    WHO, Cholera factsheet 107. http://www.who.int/mediacentre/factsheets/fs107/en/ (2015). Accessed 11 Oct 2016

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omprakash Singh Sisodiya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sisodiya, O.S., Misra, O.P. & Dhar, J. Pathogen Induced Infection and Its Control by Vaccination: A Mathematical Model for Cholera Disease. Int. J. Appl. Comput. Math 4, 74 (2018). https://doi.org/10.1007/s40819-018-0506-x

Download citation

Keywords

  • Water-borne disease
  • Cholera
  • Vaccination
  • Pathogens
  • Minimal optimal principle
  • Sensitivity analysis