Pathogen Induced Infection and Its Control by Vaccination: A Mathematical Model for Cholera Disease

  • Omprakash Singh Sisodiya
  • O. P. Misra
  • Joydip Dhar
Original Paper

Abstract

In this paper, a mathematical model is proposed to study the spread of pathogen-induced cholera disease and its control by vaccination. It is assumed in the model that cholera vaccine-induced immunity has a temporary effect and imperfect dose of vaccine does not protect the recipients. From the model, a threshold for the disease dynamics the vaccinated reproduction number \(R_V \) is derived, which is compared with the basic reproduction number \( R_0 \) for without vaccination system. It has been shown that the disease will tend to extinction when \( R_V < 1 \). The disease-free equilibrium point is asymptotically stable when \( R_V < 1 \) and unstable when \( R_V > 1 \). Further, we have also proved that a unique endemic equilibrium point exists when \( R_V > 1 \). Also used Pontryagin Minimum Principle to find out the optimal rate of vaccination and death rate of pathogen population for the control of cholera disease. Sensitivity analysis of system parameters is performed to show their relative importance to disease transmission and prevalence. Finally, numerical simulations are provided to support the analytical results.

Keywords

Water-borne disease Cholera Vaccination Pathogens Minimal optimal principle Sensitivity analysis 

References

  1. 1.
    Azman, A.S., Rudolph, K.E., Cummings, D., Lessler, J.: The incubation period of cholera: a systematic review. J. Infect. 66(5), 432–438 (2013)CrossRefGoogle Scholar
  2. 2.
    Braks, M.A., de Roda Husman, A.M.: Dimensions of effects of climate change on water-transmitted infectious diseases. Air Water Borne Dis. 2(1), 2 (2013)Google Scholar
  3. 3.
    Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–96 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Clemens, J., Harris, J., Khan, M., Kay, B., Yunus, M., Svennerholm, A.: Field trial of oral cholera vaccines in bangladesh. Lancet 2(8499), 124–127 (1986)CrossRefGoogle Scholar
  5. 5.
    Codeco, C.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1, 1 (2001)CrossRefGoogle Scholar
  6. 6.
    Diekmann, O., Heesterbeek, J., Metz, J.: On the definition and the computation of the basic reproduction ratio \(r_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Epstein, P.R., Ford, T.E., Colwell, R.R.: Cholera and the environment. Lancet 342, 1216–1219 (1993)CrossRefGoogle Scholar
  8. 8.
    Funari, E., Manganelli, M., Sinisi, L.: Impact of climate change on water-borne diseases. Ann. Ist. Super. Sanita 48(4), 473–487 (2012)CrossRefGoogle Scholar
  9. 9.
    Hartley, D.M., Morris, J.G., Smith, D.L.: Hyper infectivity: a critical element in the ability of V. cholerae to cause epidemics? Plos Med. 3, 63–69 (2006)CrossRefGoogle Scholar
  10. 10.
    Heffernan, J., Smith, R., Wahl, L.: Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005)CrossRefGoogle Scholar
  11. 11.
    Jeuland, M., Whittingtona, D.: Cost–benefit comparisons of investments in improved water supply and cholera vaccination programs. Vaccine 27, 3109–3120 (2009)CrossRefGoogle Scholar
  12. 12.
    Lemos-Paiao, A.P., Cristiana, J.S., Delfim, F.T.: An epidemic model for cholera with optimal control treatment. J. Comput. Appl. Math. 318, 168–180 (2017)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lenhart, S., Wortman, J.: Optimal Control Applied to Biological Models. Taylor and Francis, Boca Raton (2007)Google Scholar
  14. 14.
    Mahoney, R., Maynard, J.: The introduction of new vaccines into developing countries. Vaccine 17, 646–652 (1999)CrossRefGoogle Scholar
  15. 15.
    Meili, L., Junling, M., van den Driessche, P.: Model for disease dynamics of a waterborne pathogen on a random network. Math. Biol. 71(4), 961–977 (2014)MathSciNetMATHGoogle Scholar
  16. 16.
    Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D .L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreak in Zimbabwe. Sci. Rep. 108, 8767–8772 (2011)Google Scholar
  17. 17.
    Mukandavire, Z., Mutasa, F., Hove-Musekwa, S., Dube, S., Tchuenche, J.: Mathematical analysis of a cholera model with carriers: assessing the effects of treatment, chapt. 4. In: Mathematical Biology Research Trends, pp. 109–145. Nova Science Publisher, Inc. (2008)Google Scholar
  18. 18.
    Mukandavire, Z., Smith, D.L., Morris Jr., J.G.: Cholera in haiti: reproductive numbers and vaccination coverage estimates. Sci. Rep. 3(997), 1–8 (2013)Google Scholar
  19. 19.
    Neilan, R., Schaefer, E., Gaff, H., Fister, H., Lenhart, S.: Modeling optimal intervention strategies for cholera. Bull. Math. Biol. 72(8), 2004–18 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Njagarah, J.B.H., Nyabadza, F.: Modelling optimal control of cholera in communities linked by migration. Comput. Math. Methods Med. 2015, 1–12 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pandey, P.K., Kass, P.H., Soupir, M.L., Biswas, S., Singh, V.P.: Contaminationof water resources by pathogenic bacteria. AMB Express 4(51), 1–16 (2014)Google Scholar
  22. 22.
    Park, K.: Preventive and Social Medicine. M/S Banarsi Das Bhanot Publishers, Jabalpur (2005)Google Scholar
  23. 23.
    Pascual, M., Chaves, L., Cash, B., Rodo, X., Yunus, M.: Predicting endemic cholera: the role of climate variability and disease dynamics. Clim. Res. 36, 131–140 (2008)CrossRefGoogle Scholar
  24. 24.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)Google Scholar
  25. 25.
    Robertson, S.L., Eisenberg, M.C., Tien, J.H.: Heterogeneity in multiple transmission pathways: modeling the spread of cholera and other waterborne disease in networks with a common water source. J. Biol. Dyn. 7, 254–275 (2013)CrossRefGoogle Scholar
  26. 26.
    Sanches, R.P., Claudia, P.F., Kraenkel, R.A.: The role of immunity and seasonality in cholera epidemics. Bull. Math. Biol. 73, 2916–2931 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Sanchez, J., Vasquez, B.: Protective efficacy of oral whole-cell/recombinant-bsubunit cholera vaccine in peruvian military. Lancet 344(8932), 1273–1276 (1994)CrossRefGoogle Scholar
  28. 28.
    Shuai, Z., van den Driessche, P.: Global dynamics of cholera models with differential infectivity. Math. Biosci. 234, 118–126 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sun, G.-Q., Xie, J.-H., Huang, S.-H., Jin, Z., Li, M.-T., Liu, L.: Transmission dynamics of cholera: mathematical modeling and control strategies. Commun. Nonlinear Sci. Numer. Simul. 45, 235–244 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tchuenche, J.M., Mwasa, A.: Mathematical analysis of a cholera model with public health interventions. Biosystems 105, 190–200 (2011)CrossRefGoogle Scholar
  31. 31.
    Tian, J.P., Wang, J.: Global stability for cholera epidemic models. Math. Biosci. 232, 31–41 (2011)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Tien, J.H., Earn, D.J.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–33 (2010)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    van den Driesche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for the compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Wang, J., Modnak, C.: Modeling cholera dynamics with controls. Can. Appl. Math. Q. 19(3), 255–273 (2011)MathSciNetMATHGoogle Scholar
  35. 35.
    Wang, Y., Cao, J.: Global dynamics of a network epidemic model for waterborne diseases spread. Appl. Math. Comput. 237, 474–488 (2014)MathSciNetMATHGoogle Scholar
  36. 36.
    WHO, Cholera factsheet 107. http://www.who.int/mediacentre/factsheets/fs107/en/ (2015). Accessed 11 Oct 2016

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Omprakash Singh Sisodiya
    • 1
  • O. P. Misra
    • 1
  • Joydip Dhar
    • 2
  1. 1.School of Mathematics and Allied SciencesJiwaji UniversityGwaliorIndia
  2. 2.Department of Applied SciencesABV-Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations