Advertisement

Multi-switching Synchronization of Four Non-identical Hyperchaotic Systems

  • Ayub Khan
  • Mridula Budhraja
  • Aysha Ibraheem
Original Paper
  • 44 Downloads

Abstract

The paper addresses a combination synchronization scheme achieved for different switches of three master and one slave hyperchaotic systems. An asymptotically stable synchronized state is derived for different switches of master systems and slave system by using nonlinear control method and Lyapunov stability criteria. To elaborate the presented scheme Pang–Liu hyperchaotic system, Zheng hyperchaotic system and Chen hyperchaotic system are considered as master systems and Newton–Leipnik hyperchaotic system is considered as slave system. Theoretical and graphical results converge to the same conclusion which proves the efficiency of the applied approach.

Keywords

Multi-switching synchronization Hyperchaotic system Nonlinear control Lyapunov theory of stability 

References

  1. 1.
    Ajayi, A.A., Ojo, S.K., Vincent, E.U., Njah, N.A.: Multiswitching synchronization of a driven hyperchaotic circuit using active backstepping. J. Nonlinear Dyn.2014, Article ID 918586 (2014)Google Scholar
  2. 2.
    Al-sawalha, M.M., Noorani, M.S.M.: Adaptive increasing order synchronization and anti-synchronization of chaotic systems with uncertain parameters. Chin. Phys. Lett. 28(11), 110507 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Chen, G.: Fuzzy predictive control of uncertain chaotic systems using time series. Int. J. Bifurcat. Chaos. 9(4), 757–767 (1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ghosh, D., Bhattacharya, S.: Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dyn. 61(1–2), 11–21 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Goedgebuer, J.P., Levy, P., Larger, L., Chen, C.C., Rhodes, W.T.: Optical communication with synchronized hyperchaos generated electrooptically. IEEE J. Quantum Electron. 38(9), 1178–1183 (2002)CrossRefGoogle Scholar
  6. 6.
    Khan, A., Prasad, R.P.: Hybrid synchronization of hyperchaotic CAI systems via sliding mode control. J. Eng. Thermophys. 25(1), 151–157 (2016)CrossRefGoogle Scholar
  7. 7.
    Lai, Y.C.: Synchronism in symmetric hyperchaotic systems. Phys. Rev. E. 55(5), 4861–4864 (1997)CrossRefGoogle Scholar
  8. 8.
    Li, Z., Xu, D.: A secure communication scheme using projective chaos synchronization. Chaos Solitons Fractals 22(2), 477–481 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Li, Y., Tang, W.K.S., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifurcat. Chaos 15(10), 3367–3376 (2005)CrossRefGoogle Scholar
  10. 10.
    Li, W., Chen, X., Zhiping, S.: Anti-synchronization of two different chaotic systems. Physica A 387(14), 3747–3750 (2008)CrossRefGoogle Scholar
  11. 11.
    Li, Q., Yang, X.S., Chen, S.: Hyperchaos in a spacecraft power system. Int. J. Bifurcat. Chaos 21(6), 1719–1726 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1–2), 291–297 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. 132(4), 044501–044506 (2010)CrossRefGoogle Scholar
  14. 14.
    Marin, M., Baleanu, D.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound Value Probl. 2016, 1–19 (2016). (Article No. 111)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ojo, K.S., Njah, A.N., Olusola, O.I., Omeike, M.O.: Generalized reduced-order hybrid combination synchronization of three Josephson junctions via backstepping technique. Nonlinear Dyn. 77(3), 583–595 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pang, S., Liu, Y.: A new hyperchaotic system from the Lu system and its control. J. Comput. Appl. Math. 235(8), 2775–2789 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pecora, L.: Hyperchaos harnessed. Phys. World 9(5), 17 (1996)CrossRefGoogle Scholar
  19. 19.
    Peng, J.H., Ding, E.J., Ding, M., Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 76(6), 904–907 (1996)CrossRefGoogle Scholar
  20. 20.
    Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74(11), 1970–1973 (1995)CrossRefGoogle Scholar
  21. 21.
    Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71(2–3), 155–157 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Runzi, L., Yinglan, W., Shucheng, D.: Combination synchronization of three classic chaotic systems using active beckstepping design. Chaos 21(4), 043114 (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shahverdiev, E.M., Sivaprakasam, S., Shore, K.A.: Lag synchronization in time-delayed systems. Phys. Lett. A. 292(6), 320–324 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sun, J., Shen, Y., Yi, Q., Xu, C.: Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1), 013140 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ucar, A., Lonngren, K.E., Bai, E.W.: Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fractals 38(1), 254–262 (2008)CrossRefGoogle Scholar
  27. 27.
    Udaltsov, V.S., Goedgebuer, J.P., Larger, L., Cuenot, J.B., Levy, P., Rhodes, W.T.: Communicating with hyperchaos: the dynamics of a DNLF emitter and recovery of transmitted information. Opt. Spectrosc. 95(1), 114–118 (2003)CrossRefGoogle Scholar
  28. 28.
    Vincent, U.E., Guo, R.: A simple adaptive control for full and reduced order synchronization of uncertain time varying chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3925–3932 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vincent, U.E., Saseyi, A.O., McClintock, P.V.E.: Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn. 80(1–2), 845–854 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Voss, H.U.: Anticipating chaotic synchronization. Phys. Rev. E 61(5), 5115–5119 (2000)CrossRefGoogle Scholar
  31. 31.
    Wang, C., Ge, S.S.: Synchronization of two uncertain chaotic systems via adaptive backstepping. Int. J. Bifurcat. Chaos 11(6), 1743–1751 (2001)CrossRefGoogle Scholar
  32. 32.
    Wang, X.Y., Wu, X.J.: Tracking control and synchronizaton of four dimensional hyperchaotic Rossler system. Chaos 16(3), 033121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, Y.W., Guan, Z.H.: Generalized synchronization of continuous chaotic system. Chaos Solitons Fractals 27(1), 97–101 (2006)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, F., Liu, C.: Synchronization of unified chaotic system based on passive control. Physica D 225(1), 55–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, X.Y., Sun, P.: Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn. 63(4), 599–609 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Xu, X.: Generalized function projective synchronization of chaotic systems for secure communication. EURASIP J. Adv. Signal Process. 2011, 14 (2011)CrossRefGoogle Scholar
  37. 37.
    Yan, Z.: Q-S(lag or anticipated) synchronization backstepping scheme in a class of continous time hyperchaotic systems a symbolic numeric computation approach. Chaos 15(2), 023902 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Yang, X.S.: Chaos and hyperchaos in a class of simple cellular neural networks modeled by o.d.e. Int. J. Bifurcat. Chaos 16(9), 2729–2736 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhang, H., Ma, X.: Synchronization of uncertain chaotic systems with parameters perturbation via active control. Chaos Soliton Fractals 21(1), 39–47 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang, H., Huang, W., Wang, Z., Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A 350(5–6), 363–366 (2006)CrossRefzbMATHGoogle Scholar
  41. 41.
    Zhang, B., Deng, F.: Double compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn. 77(4), 1519–1530 (2014)CrossRefGoogle Scholar
  42. 42.
    Zheng, S., Dong, G., Bi, Q.: A new hyperchaotic system and its synchronization. Appl. Math. Comput. 215(9), 3192–3200 (2010)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zheng, S.: Multi-switching combination synchronization of three different chaotic systems via active nonlinear control. Optik 127(21), 10247–10258 (2016)CrossRefGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of MathematicsShivaji CollegeNew DelhiIndia
  3. 3.Department of MathematicsUniversity of DelhiDelhiIndia

Personalised recommendations