Skip to main content
Log in

Local Fractional Operator for Analytical Solutions of the K(2, 2)-Focusing Branch Equations of Time-Fractional Order

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Local Fractional Operator (LFO) with respect to Caputo Derivative (CD) is employed for approximate-analytical solutions of the K(2, 2)-focusing branch equation of time-fractional order. The LFO technique is a projected version of the standard Differential Transform Method. The results obtained show that the method is simple, easy in implementation, and very much in line with the exact solutions at α = 1. Thus, the efficiency and robustness of the method. In addition, the proposed technique does not require the process or concept of Lagrange multipliers identification as in the case of the Variational Iteration Method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li, C., Tang, S., Ma, Z.: Analytic and loop solutions for the K(2,2) equation (focusing branch). J. Nonlinear Sci. Appl. 9, 1334–1340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adomian, G.: Solving frontier problems of physics: the decomposition method. Kluwer Academic Press, Boston (1994)

    Book  MATH  Google Scholar 

  3. González-Gaxiola, O., Edeki, S.O., Ugbebor, O.O., de Chávez, J.R.: Solving the Ivancevic pricing model using the He’s frequency amplitude formulation. Eur. J. Pure Appl. Math. 10(4), 631–637 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Champan & Hall/CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  5. Deng, X., Parkes, E.J., Cao, J.: Exact solitary and periodic-wave solutions of the K(2,2) equation (focusing branch). Appl. Math. Comput. 217, 1566–1576 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Li, J.B.: Dynamical understanding of loop soliton for several nonlinear wave equations. Sci. China Math. 50, 773–785 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Edeki, S.O., Akinlabi, G.O., Adeosun, S.A.: Approximate-analytical solutions of the generalized Newell–Whitehead–Segel model by He’s polynomials method. In: Proceedings of the World Congress on Engineering 2017, London, UK, vol. I, pp. 57–59 (2017)

  8. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelengths. Phys. Rev. Lett. 70, 564–567 (1993)

    Article  MATH  Google Scholar 

  9. Alomari, A.K., Noorani, M.S.M., Nazar, R.: The Homotopy analysis method for the exact solutions of the k(2,2), burgers and coupled burgers equations. Appl. Math. Sci. 2(40), 1963–1977 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Ziane, D., Belghaba, K., Cherif, M.H.: Fractional Homotopy perturbation transform method for solving the time-fractional KdV, K(2,2) and Burgers equations. Int. J. Open Problems Compt. Math. 8(2), 64–75 (2015)

    Google Scholar 

  11. Bouhassoun, A., Zellal, M.: The variational Homotopy perturbation method for solving the K(2,2) equations. Int. J. Appl. Math. Res. 2(2), 338–344 (2013)

    Article  MATH  Google Scholar 

  12. Zhou, J., Tian, L.: Soliton solution of the osmosis K(2, 2) equation. Phys. Lett. A 372, 6232–6234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar, S., Yildirim, A., Khan, Y., Wei, L.: A fractional model of the diffusion equation and its analytical solution using Laplace transform. Sci. Iran. 19(4), 1117–1123 (2012)

    Article  Google Scholar 

  14. Mirzazadeh, M.: A novel approach for solving fractional Fisher equation using differential transform method. Pramana J. Phys. 86(5), 957–963 (2016)

    Article  Google Scholar 

  15. Nyamoradi, N., Baleanu, D., Agarwal, R.P.: On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval. Adv. Math. Phys. 2013, Article ID 823961

  16. Edeki, S.O., Akinlabi, G.O., Adeosun, S.A.: Analytic and numerical solutions of Time-fractional linear Schrödinger equation. Commun. Math. Appl. 7(1), 1–10 (2016)

    Google Scholar 

  17. Jafari, H., Tajadodi, H., Johnston, S.J.: A decomposition method for solving diffusion equations via local fractional time derivative. Therm. Sci. 19(Suppl. 1), S123–S129 (2015)

    Article  Google Scholar 

  18. Zhou, J.K.: Differential transformation and its application for electrical circuits. Huarjung University Press, Wuuhahn (1986)

    Google Scholar 

  19. Edeki, S.O., Akinlabi, G.O., Adeosun, S.A.: On a modified transformation method for exact and approximate solutions of linear Schrödinger equations. AIP Conf. Proc. 1705, 020048 (2016). https://doi.org/10.1063/1.4940296

    Article  Google Scholar 

  20. Jang, B.: Solving linear and nonlinear initial value problems by the projected differential transform method. Comput. Phys. Commun. 181(5), 848–854 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Edeki, S.O., Ugbebor, O.O., Owoloko, E.A.: Analytical solutions of the Black-Scholes pricing model for European option valuation via a projected differential transformation method. Entropy 17(11), 7510–7521 (2015)

    Article  Google Scholar 

  22. Akinlabi, G.O., Edeki, S.O.: On approximate and closed-form solution method for initial-value wave-like models. Int. J. Pure Appl. Math. 107(2), 449–456 (2016)

    Article  Google Scholar 

  23. Jafari, H., Alipour, M., Tajadodi, H.: Two dimensional differential transform method for solving nonlinear partial differential equations. Int. J. Res. Rev. Appl. Sci. 2(1), 47–52 (2010)

    MATH  Google Scholar 

  24. Jafari, H., Jassim, H.K., Al Qurashi, M., Baleanu, D.: On the existence and uniqueness of solutions for local fractional differential equations. Entropy 18(11), 420 (2016). https://doi.org/10.3390/e18110420

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Covenant University for the provision of research resources. Also, sincere thanks to the anonymous referee(s) for their helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Edeki.

Ethics declarations

Conflict of interest

Concerning the publication of this manuscript, no conflict of interest is declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edeki, S.O., Akinlabi, G.O. & Nyamoradi, N. Local Fractional Operator for Analytical Solutions of the K(2, 2)-Focusing Branch Equations of Time-Fractional Order. Int. J. Appl. Comput. Math 4, 66 (2018). https://doi.org/10.1007/s40819-018-0500-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0500-3

Keywords

Mathematics Subject Classification

Navigation