Advertisement

Exploration of Heat and Mass Transfer in the Convective Slip Flow of Non-Newtonian Casson Fluid

  • Amit Parmar
  • Shalini Jain
Original Paper
  • 29 Downloads

Abstract

The present aim is concerned with heat and mass transfer of an unsteady convective slip flow of Casson fluid flow through a permeable vertical plate with heat source. The influence of radiation absorption and chemical reaction is also taken into consideration. Time depending governing equations are solved by implicit finite difference method using MATLAB. Results for various fluid flow parameter characteristics such as Casson fluid parameter, velocity slip parameter, Biot number, convection diffusion parameter, porosity parameter, Grashof number, heat source and radiative absorption parameter are presented through graphs and tables delineating the effect of various parameters characterizing the flow.

Keywords

Casson fluid Chemical reaction Heat source Convective boundary condition 

References

  1. 1.
    Gireesha, B.J., Mahanthesh, B., Rashidi, M.M.: MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink. Int. J. Ind. Math. 7(3), 247–260 (2015)Google Scholar
  2. 2.
    Raju, C.S.K., Sandeep, N.: Unsteady three-dimensional flow of Casson–Carreau fluids past a stretching surface. Alex. Eng. J. 55, 1115–1126 (2016)CrossRefGoogle Scholar
  3. 3.
    Raju, C.S.K., Sandeep, N., Sugunamma, V., Jayachandrababu, M., Ramanareddy, J.V.: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface. Eng. Sci. Technol. Int. 19(1), 45–52 (2016)CrossRefGoogle Scholar
  4. 4.
    Benazir, A.J., Sivaraj, R., Makinde, O.D.: Unsteady MHD Casson fluid flow over a vertical cone and flat plate with nonuniform heat source/sink. Int. J. Eng. Res. Afr. 21, 69–83 (2015)CrossRefGoogle Scholar
  5. 5.
    Khan, S.I., Khan, U., Ahmed, N., Jan, S.U., Waheed, A., Din, S.T.M.: Effects of viscous dissipation and convective boundary conditions on Blasius and Sakiadis problems for Casson fluid. Natl. Acad. Sci. Lett. 38(3), 247–250 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hussain, T., Shehzad, S.A., Alsaedi, A., Hayat, T., Ramzan, M.: Flow of Casson Nanofluid with viscous dissipation and convective conditions: a mathematical model. J. Cent. South Univ. 22, 1132–1140 (2015)CrossRefGoogle Scholar
  7. 7.
    Mahanta, G., Shaw, S.: Mixed convection stagnation point flow of Casson fluid with convective boundary conditions. IJIRSET 4(2), 2347–6710 (2015)Google Scholar
  8. 8.
    Arthur, E.M., Seini, I.Y., Bortteir, L.B.: Analysis of Casson fluid flow over a vertical porous surface with chemical reaction in the presence of magnetic field. J. Appl. Math. Phys. 3, 713–723 (2015)CrossRefGoogle Scholar
  9. 9.
    Megahed, A.M.: Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Appl. Math. Mech. Engl. Ed. 36(10), 1273–1284 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Megahed, A.M.: MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation. Eur. Phys. J. Plus 130, 81 (2015)CrossRefGoogle Scholar
  11. 11.
    Kataria, H.R., Patel, H.R.: Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alex. Eng. J. 55, 583–595 (2016)CrossRefGoogle Scholar
  12. 12.
    Ullah, I., Khan, I., Shafie, S.: Hydromagnetic Falkner–Skan flow of Casson fluid past a moving wedge with heat transfer. Alex. Eng. J. 55(3), 2139–2148 (2016)CrossRefGoogle Scholar
  13. 13.
    Animasaun, I.L., Sandeep, N., Koriko, O.K.: Modified kinematic viscosity model for 3D-Casson fluid flow within boundary layer formed on a surface at absolute zero. J. Mol. Liq. 221, 1197–1206 (2016)CrossRefGoogle Scholar
  14. 14.
    Animasaun, I.L.: Casson fluid flow with variable viscosity and thermal conductivity along exponentially stretching sheet embedded in a thermally stratified medium with exponentially heat generation. J. Heat Mass Transf. Res. (JHMTR) 2(2), 63–78 (2015)Google Scholar
  15. 15.
    Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-Darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34, 11–31 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Makinde, O.D., Animasaun, I.L.: Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRefGoogle Scholar
  17. 17.
    Makinde, O.D., Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRefGoogle Scholar
  18. 18.
    Shaw, S., Mahanta, G., Sibanda, P.: Non-linear thermal convection in a Casson fluid flow over a horizontal plate with convective boundary condition. Alex. Eng. J. 55, 1295–1304 (2016)CrossRefGoogle Scholar
  19. 19.
    Sulochana, C., Ashwinkumar, G.P., Sandeep, N.: Similarity solution of 3D Casson nanofluid flow over a stretching sheet with convective boundary conditions. J. Niger. Math. Soc. 35, 128–141 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Malik, M.Y., Khan, M., Salahuddin, T., Khan, I.: Variable viscosity and MHD flow in Casson fluid with Cattaneo–Christov heat flux model: Using Keller box method. Eng. Sci. Technol. Int. J. 19, 1985–1992 (2016)CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya, K., Uddin, M.S., Layek, G.C.: Exact solution for thermal boundary layer in Casson fluid flow over permeable shrinking sheet with variable wall temperature and thermal radiation. Alex. Eng. J. 55, 1703–1712 (2016)CrossRefGoogle Scholar
  22. 22.
    Raju, C.S.K., Sandeepa, N., Saleem, S.: Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid. Eng. Sci. Technol. Int. J. 19, 875–887 (2016)CrossRefGoogle Scholar
  23. 23.
    Bala, P., Reddy, A.: Magneto hydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Eng. J. 7, 593–602 (2016)CrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay, S.: Casson fluid flow and heat transfer over a nonlinearly stretching surface. Chin. Phys. 22, 7 (2013)Google Scholar
  25. 25.
    Makinde, O.D.: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica 47, 1173–1184 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Das, K., Sharma, R.P., Sarkar, A.: Heat and mass transfer of a second-grade magneto-hydrodynamic fluid over a convectively heated stretching sheet. J. Comput. Des. Eng. 3, 330–336 (2016)Google Scholar
  27. 27.
    Chauhan, D.S., Agrawal, R.: MHD flow through a porous medium adjacent to a stretching sheet: numerical and an approximate solution. Eur. Phys. J. Plus 126, 47 (2011). (11047-3) CrossRefGoogle Scholar
  28. 28.
    Chauhan, D.S., Rastogi, P.: Heat transfer and entropy generation in MHD flow through a porous medium past a stretching sheet. Int. J. Energy Technol. 3(15), 1–13 (2011)Google Scholar
  29. 29.
    Chauhan D.S., Agrawal R.: MHD flow and heat transfer in a channel bounded by a shrinking sheet and a porous medium bed: homotopy analysis method. ISRN Thermodyn. Article ID 291270, 10 (2013). http://dx.doi.org/10.1155/2013/291270.
  30. 30.
    Layek, G.C., Mukhopadhyay, S., Samad, S.K.A.: Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity. Int. J. Heat Mass Transf. 48, 4460–4466 (2005)CrossRefzbMATHGoogle Scholar
  31. 31.
    Animasaun, I.L., Aluko, O.B.: Analysis on variable fluid viscosity of non-Darcian flow over a moving vertical plate in a porous medium with suction and viscous Dissipation. Int. Organ. Sci. Res. (J. Eng.) 04, 18–32 (2014)Google Scholar
  32. 32.
    Animasaun, I.L., Oyem, A.O.: Effect of variable viscosity, Dufour, Soret and thermal conductivity on free convective heat and mass transfer of non-Darcian flow past porous flat surface. Am. J. Comput. Math. 4, 357–365 (2014)CrossRefGoogle Scholar
  33. 33.
    Jain, S., Kumar, V., Bohra, S.: Entropy generation for MHD radiative compressible fluid flow in a channel partially filled with porous medium. Glob. Stoch. Anal. SI:13–31 (2017). http://www.mukpublications.com/resources/Ch_2_F%20-%20urgent%20shweta.pdf
  34. 34.
    Jain, S., Choudhary, R.: Soret and Dufour effects on MHD fluid flow due to moving permeable cylinder with radiation. Glob. Stoch. Anal. SI:75–84 (2017). http://www.mukpublications.com/resources/Ch_8_F%20-%201-193%20Rakesh%20Choudhary.pdf
  35. 35.
    Jain, S., Choudhary, R.: Effects of MHD on boundary layer flow in porous medium due to exponentially shrinking sheet with slip. Procedia Eng. 127, 1203–1210 (2015)CrossRefGoogle Scholar
  36. 36.
    Jain, S., Parmar, A.: Comparative study of flow and heat transfer behavior of Newtonian and non-Newtonian fluids over a permeable stretching surface. Glob. Stoch. Anal. SI:41–50 (2017). http://www.mukpublications.com/resources/Ch_4_F%20-%20Manuscript--amit%20parmar.pdf
  37. 37.
    Jain, S.: Temperature distribution in a viscous fluid flow through a channel bounded by a porous medium and a stretching sheet. J. Rajasthan Acad. Phys. Sci. 4, 477–482 (2006)zbMATHGoogle Scholar
  38. 38.
    Parmar, A.: MHD Falkner–Skan flow of Casson fluid flow and heat transfer with variable property past a moving wedge. Int. J. Appl. Comput. Math. (2017).  https://doi.org/10.1007/s40819-017-0373-x MathSciNetGoogle Scholar
  39. 39.
    Parmar, A.: Unsteady convective boundary layer flow for MHD Williamson fluid over an inclined porous stretching sheet with non-linear radiation and heat source. Int. J. Appl. Comput. Math. (2017).  https://doi.org/10.1007/s40819-017-0387-4 MathSciNetGoogle Scholar
  40. 40.
    Jain, S., Bohra, S.: Heat and mass transfer over a three-dimensional inclined non-linear stretching sheet with convective boundary conditions. Indian J. Pure Appl. Phys. 55, 847–856 (2017)Google Scholar
  41. 41.
    Gaffar, S.A., Prasad, V.R., Vijaya, B., Beg, O.A.: Mixed convection flow of magnetic viscoelastic polymer from a non-isothermal wedge with Biot number effects. Int. J. Eng. Math. 287623, 15 (2015).  https://doi.org/10.1155/2015/287623 zbMATHGoogle Scholar
  42. 42.
    Ayano, M.S., Demeke, N.T.: Slip effect on MHD chemically reacting convictive boundary layer flow with heat absorption. J. Eng. 2689493, 9 (2016).  https://doi.org/10.1155/2016/2689493 Google Scholar
  43. 43.
    Ahmed, A.A.: The influence of slip boundary condition on Casson nanofluid flow over a stretching sheet in the presence of viscous dissipation and chemical reaction. Math. Probl. Eng. 3804751, 12 (2017).  https://doi.org/10.1155/2017/3804751 MathSciNetGoogle Scholar
  44. 44.
    Ajayi, T.M., Omowaye, A.J., Animasau, I.L.: viscous dissipation effects on the motion of Casson fluid over an upper horizontal thermally stratified melting surface of a paraboloid of revolution: boundary layer analysis. J. Appl. Math. 1697135, 13 (2017).  https://doi.org/10.1155/2017/1697135 MathSciNetGoogle Scholar
  45. 45.
    Krishnaiah, M., Rajendar, P., Laxmi, T.V., Reddy, M.C.K.: Influence of non-uniform heat source/sink on stagnation point flow of a MHD Casson nanofluid flow over an exponentially stretching surface. Glob. J. Pure Appl. Math. 13(10), 7009–7033 (2017)Google Scholar
  46. 46.
    Seth, G.S., Sarkar, S., Chamkha, A.J.: Unsteady hydromagnetic flow past a moving vertical plate with convective surface boundary condition. J. Appl. Fluid Mech. 9(4), 1877–1886 (2016)Google Scholar
  47. 47.
    Pandya, N., Shukla, A.K.: Effect of radiation and chemical reaction on an unsteady Walter’s-B viscoelastic MHD flow past a vertical porous plate. Int. J. Adv. Appl. Math. Mech. 3(3), 19–26 (2016)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Prakash, J., Prasad, P.D., Kiran Kumar, R.V.M.S.S., Varma, S.V.K.: Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate. JCARME 5(2), 111–126 (2016)Google Scholar
  49. 49.
    Reddy, G.S., Kumar, S.G., Reddy, S.K., Prasad, P.D., Varma, S.V.K.: MHD free convective radiative and chemically reactive flow over a vertical porous surface in the presence of diffusion-thermo effect. Int. J. Adv. Eng. Res. Sci. (IJAERS) 4(5), 65–78 (2017)CrossRefGoogle Scholar
  50. 50.
    Hayat, T., Mabood, F., Imtiaz, M., Alsaedi, A.: Unsteady convective boundary layer flow of Maxwell fluid with nonlinear thermal radiation: a numerical study. IJNSNS 17(5), 221–229 (2016)MathSciNetGoogle Scholar
  51. 51.
    Kim, Y.J.: Unsteady MHD convective heat transfer past a semi-infinite vertical moving plate with variable suction. Int. J. Eng. Sci. 38(8), 833–845 (2000)CrossRefzbMATHGoogle Scholar
  52. 52.
    Pal, D., Talukdar, B.: Perturbation analysis of unsteady magneto hydro-dynamic convective heat and mass transfer in a boundary layer slip flow past a vertical permeable plate with thermal radiation and chemical reaction. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1813–1830 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsManipal University JaipurJaipurIndia

Personalised recommendations