Advertisement

Numerical Solution of the Fractional Order Duffing–van der Pol Oscillator Equation by Using Bernoulli Wavelets Collocation Method

  • P. Rahimkhani
  • R. Moeti
Original Paper

Abstract

In the present article, we propose a new numerical method to solve the fractional order Duffing–van der Pol oscillator equation. The proposed method is based on using collocation points and approximating the solution employing the Bernoulli wavelets. The Riemann–Liouville fractional integral operator for Bernoulli wavelets is introduced. This operator is then utilized to reduce the solution of the fractional order Duffing–van der Pol oscillator equation to a system of algebraic equations. In order to demonstrate the accuracy and efficiency of the proposed scheme, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations.

Keywords

Fractional order Duffing–van der Pol oscillator equation Collocation method Bernoulli wavelets Caputo derivative Numerical solution 

Mathematics Subject Classification

34A08 34K28 65L05 

Notes

Acknowledgements

Authors are very grateful to one of the reviewers for carefully reading the paper and for his(her) comments and suggestions which have improved the paper.

References

  1. 1.
    Abd-Elhameed, W.M., Doha, E.H., Youssri, Y.H.: New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second order differential equations involving singular and Bratu type equations. Abstr. Appl. Anal. 2013 (2013)Google Scholar
  2. 2.
    Asadi Cordshooli, G., Vahidi, A.R.: Solutions of Duffing van der Pol equation using decomposition method. Adv. Stud. Theor. Phys. 5(1–4), 121–129 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations. J. Comput. Nonlinear Dyn. 10 (2015)Google Scholar
  4. 4.
    Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Khellat, F., Yousefi, S.A.: The linear Legendre mother wavelets operational matrix of integration and its application. J. Frankl. Inst. 343, 181–190 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)zbMATHGoogle Scholar
  7. 7.
    Kumar, D., Upadhyay, S., Singh, S., Rai, K.N.: Legendre wavelet collocation solution for system of linear and nonlinear delay differential equations. Int. J. Appl. Comput. Math. 3(1), 295–310 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lakestani, M., Dehghan, M., Irandoust-pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1149–1162 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lotfi, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237, 633–643 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)Google Scholar
  11. 11.
    Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315(15), 169–181 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: A hybrid functions approach for the Duffing equation. Phys. Scr. 88, 025002 (2013). (8pp)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mohyud-Din, S.T., Iqbal, M.A., Hassan, S.M.: Modified Legendre wavelets technique for fractional oscillation equations. Entropy 17, 6925–6936 (2015)CrossRefGoogle Scholar
  14. 14.
    Rabiei, K., Ordokhani, Y., Babolian, E.: Numerical Solution of 1D and 2D fractional optimal control of system via Bernoulli polynomials. Int. J. Appl. Comput. Math. (2018).  https://doi.org/10.1007/s40819-017-0435-0 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: Müntz–Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algor. (2017).  https://doi.org/10.1007/s11075-017-0363-4
  16. 16.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn. 86, 1649–1661 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40, 8087–8107 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithm 74(1), 223–245 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Appl. Numer. Math. 122, 66–81 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. (2017).  https://doi.org/10.1007/s40314-017-0547-5 Google Scholar
  21. 21.
    Saeed, U., ur Rehman, M.: Haar wavelet operational matrix method for fractional oscillation equations. Int. J. Math. Math. Sci. 2014 (2014)Google Scholar
  22. 22.
    Saeedi, H., Moghadam, M.M., Mollahasani, N., Chuev, G.N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16, 1154–1163 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sajadi, H., Ganji, D.D., Shenas, Y.V.: Application of numerical and semianalytical approach on van der Pol Duffing oscillators. J. Adv. Res. Mech. Eng. 1(3), 136–141 (2010)Google Scholar
  24. 24.
    Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet operational matrix method. Int. J. Appl. Comput. Math. 3(3), 2423–2445 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wang, H., Du, N.: Fast alternating-direction finite difference methods for three dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the two dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Youssri, Y.H., Abd-Elhame, W.M., Doha, E.H.: Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys. 60, 1298–1314 (2015)Google Scholar
  28. 28.
    Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl. Math. Model. 38, 3860–3870 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesAlzahra UniversityTehranIran
  2. 2.Sama Technical and Vocational Training CollegeIslamic Azad University, Arak BranchArakIran
  3. 3.Farhangian UniversityTehranIran

Personalised recommendations