Skip to main content
Log in

Numerical Solution of the Fractional Order Duffing–van der Pol Oscillator Equation by Using Bernoulli Wavelets Collocation Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present article, we propose a new numerical method to solve the fractional order Duffing–van der Pol oscillator equation. The proposed method is based on using collocation points and approximating the solution employing the Bernoulli wavelets. The Riemann–Liouville fractional integral operator for Bernoulli wavelets is introduced. This operator is then utilized to reduce the solution of the fractional order Duffing–van der Pol oscillator equation to a system of algebraic equations. In order to demonstrate the accuracy and efficiency of the proposed scheme, we have considered three problems namely: fractional order force-free Duffing–van der Pol oscillator, forced Duffing–van der Pol oscillator and higher order fractional Duffing equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abd-Elhameed, W.M., Doha, E.H., Youssri, Y.H.: New spectral second kind Chebyshev wavelets algorithm for solving linear and nonlinear second order differential equations involving singular and Bratu type equations. Abstr. Appl. Anal. 2013 (2013)

  2. Asadi Cordshooli, G., Vahidi, A.R.: Solutions of Duffing van der Pol equation using decomposition method. Adv. Stud. Theor. Phys. 5(1–4), 121–129 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: An efficient Legendre spectral tau matrix formulation for solving fractional subdiffusion and reaction subdiffusion equations. J. Comput. Nonlinear Dyn. 10 (2015)

  4. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  5. Khellat, F., Yousefi, S.A.: The linear Legendre mother wavelets operational matrix of integration and its application. J. Frankl. Inst. 343, 181–190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    MATH  Google Scholar 

  7. Kumar, D., Upadhyay, S., Singh, S., Rai, K.N.: Legendre wavelet collocation solution for system of linear and nonlinear delay differential equations. Int. J. Appl. Comput. Math. 3(1), 295–310 (2017)

    Article  MathSciNet  Google Scholar 

  8. Lakestani, M., Dehghan, M., Irandoust-pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1149–1162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lotfi, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237, 633–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  11. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315(15), 169–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mashayekhi, S., Ordokhani, Y., Razzaghi, M.: A hybrid functions approach for the Duffing equation. Phys. Scr. 88, 025002 (2013). (8pp)

    Article  MATH  Google Scholar 

  13. Mohyud-Din, S.T., Iqbal, M.A., Hassan, S.M.: Modified Legendre wavelets technique for fractional oscillation equations. Entropy 17, 6925–6936 (2015)

    Article  Google Scholar 

  14. Rabiei, K., Ordokhani, Y., Babolian, E.: Numerical Solution of 1D and 2D fractional optimal control of system via Bernoulli polynomials. Int. J. Appl. Comput. Math. (2018). https://doi.org/10.1007/s40819-017-0435-0

    MathSciNet  MATH  Google Scholar 

  15. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Müntz–Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algor. (2017). https://doi.org/10.1007/s11075-017-0363-4

  16. Rahimkhani, P., Ordokhani, Y., Babolian, E.: An efficient approximate method for solving delay fractional optimal control problems. Nonlinear Dyn. 86, 1649–1661 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40, 8087–8107 (2016)

    Article  MathSciNet  Google Scholar 

  18. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithm 74(1), 223–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Appl. Numer. Math. 122, 66–81 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sabermahani, S., Ordokhani, Y., Yousefi, S.A.: Numerical approach based on fractional-order Lagrange polynomials for solving a class of fractional differential equations. Comput. Appl. Math. (2017). https://doi.org/10.1007/s40314-017-0547-5

    Google Scholar 

  21. Saeed, U., ur Rehman, M.: Haar wavelet operational matrix method for fractional oscillation equations. Int. J. Math. Math. Sci. 2014 (2014)

  22. Saeedi, H., Moghadam, M.M., Mollahasani, N., Chuev, G.N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16, 1154–1163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sajadi, H., Ganji, D.D., Shenas, Y.V.: Application of numerical and semianalytical approach on van der Pol Duffing oscillators. J. Adv. Res. Mech. Eng. 1(3), 136–141 (2010)

    Google Scholar 

  24. Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet operational matrix method. Int. J. Appl. Comput. Math. 3(3), 2423–2445 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation method for the two dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Youssri, Y.H., Abd-Elhame, W.M., Doha, E.H.: Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys. 60, 1298–1314 (2015)

    Google Scholar 

  28. Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl. Math. Model. 38, 3860–3870 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are very grateful to one of the reviewers for carefully reading the paper and for his(her) comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rahimkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimkhani, P., Moeti, R. Numerical Solution of the Fractional Order Duffing–van der Pol Oscillator Equation by Using Bernoulli Wavelets Collocation Method. Int. J. Appl. Comput. Math 4, 59 (2018). https://doi.org/10.1007/s40819-018-0494-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0494-x

Keywords

Mathematics Subject Classification

Navigation