Natural Convection in a Square Cavity with Uniformly Heated and/or Insulated Walls Using Marker-and-Cell Method

  • B. Md. Hidayathulla Khan
  • K. Venkatadri
  • O. Anwar Bég
  • V. Ramachandra Prasad
  • B. Mallikarjuna
Original Paper


In this paper, a numerical Harlow–Welch MAC (Marker and Cell) method is developed to investigate the unsteady free convection in lid-driven square cavity. The constant heat flux is considered over left wall and remaining walls are kept thermally insulated. The structure of thermal convection patterns analysed via streamline, vorticity, pressure and temperature contour plots. The influence of the thermo-physical parameters, Reynolds number (Re), thermal Grashof number (Gr) Prandtl number (Pr) and Peclét number (Pe = PrRe), on these distributions are described in detail. Validation of solutions with earlier studies is included. Mesh independence is also conducted. It is observed that an increase in Prandtl number intensifies the primary circulation whereas it reduces the heat transfer rate. Increasing thermal Grashof number also decreases heat transfer rates. Furthermore, the isotherms are significantly compressed towards the left (constant flux) wall with a variation in Grashof number while Peclét number is fixed. The study is relevant to solar collector heat transfer simulations and also crystal growth technologies.


Lid driven enclosure Thermal convection MAC numerics Thermal Grashof number Prandtl number Solar collectors 


  1. 1.
    Hasemi, Y., Tokunaga, T.: Some experimental aspects of turbulent diffusion flames and buoyant plumes from fire sources against a wall and in a corner of walls. Combust. Sci. Technol. 40, 1–18 (1984)CrossRefGoogle Scholar
  2. 2.
    Anwar Bég, O., Ali, N., Zaman, A., Bég, E.T.A., Sohail, A.: Computational modelling of heat transfer in annular porous medium solar energy absorber with a P1-radiative differential approximation. J. Taiwan Inst. Chem. Eng. (2016). Google Scholar
  3. 3.
    Llanos, E.M., Zarrouk, S.J., Hogarth, R.A.: Numerical model of the Habanero geothermal reservoir, Australia. Geothermics 53, 308–319 (2015)CrossRefGoogle Scholar
  4. 4.
    Gelfgat, A.Y.: On three-dimensional instability of a traveling magnetic field driven flow in a cylindrical container. J. Crystal Growth 279, 276–288 (2005)CrossRefGoogle Scholar
  5. 5.
    Bhargava, R., Sharma, S., Bhargava, P., Anwar Bég, O., Kadir, A.: Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with Rayleigh number effects. Int. J. Appl. Comput. Math. (2016). Google Scholar
  6. 6.
    Rudraiah, N., Barron, R.M., Venkatachalappa, M., Subbaraya, C.K.: Effect of magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 33, 1075–1084 (1995)CrossRefzbMATHGoogle Scholar
  7. 7.
    Garander, J.P., Alboussiere, T., Moreau, R.: Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int. J. Heat Mass Transf. 35, 741–748 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bhavaneswari, M.S., Sivasankaran, S., Kim, Y.J.: Numerical study on double diffusive mixed convection with a Soret effect in a two-sided lid-driven cavity. Numer. Heat Transf. A 59, 543–560 (2011)CrossRefGoogle Scholar
  9. 9.
    Moallemi, M.K., Jang, K.S.: Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int. J. Heat Mass Transf. 35, 1881–1892 (1992)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sathiyamoorthy, M., Chamkha, A.J.: Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. Int. J. Numer. Methods Heat Fluid Flows 22, 677–698 (2012)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kakarantzas, S.C., Sarris, I.E., Grecos, A.P., Vlachos, N.S.: Magnetohydrodynamic natural convection in a vertical cylindrical cavity with sinusoidal upper wall temperature. Int. J. Heat Mass Transf. 28, 250–259 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Saravanan, S., Abdul Hakeema, A.K., Kandaswamy, P., Leeb, J.: Buoyancy convection in a cavity with mutually orthogonal heated plates. Int. J. Comput. Math. Appl. 55, 2903–2912 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Walker, K.L., Homsy, G.M.: Convection in porous cavity. J. Fluid Mech. 87, 449–474 (1978)CrossRefzbMATHGoogle Scholar
  14. 14.
    Abdul Hakeema, A.K., Saravanan, S., Kandaswamy, P.: Natural convection in a square cavity due to thermally active plates for different boundary conditions. Int. J. Comput. Math. Appl. 62, 491–496 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chamkha, A.J., Mallikarjuna, B., Bhuvanavijaya, R., Prasada Rao, D.R.V.: Heat and mass transfer in a porous medium filled rectangular duct with Soret and Dufour effects under inclined magnetic field. Int. J. Numer. Methods Heat Fluid Flow 24(7), 1405–1436 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mallikarjuna, B., Chamkha, A.J., Bhuvanavijaya, R.: Soret and Dufour effects on double diffusive convective flow through a non-Darcy porous medium in a cylindrical annular region in the presence of heat source. J. Porous Media 17(7), 623–636 (2014)CrossRefGoogle Scholar
  17. 17.
    Shi, X., Khodadadi, J.M.: Laminar natural convection heat transfer in a differentially heated square cavity due to a thin fin on the hot wall. ASME J. Heat Transf. 125, 624–634 (2003)CrossRefGoogle Scholar
  18. 18.
    Lakhal, E.K., Hasnaoui, M., Bilgen, E., Vasseur, P.: Natural convection in inclined rectangular enclosures with perfectly conducting fins attached on the heated wall. Heat Mass Transf. 32, 365–373 (1997)CrossRefGoogle Scholar
  19. 19.
    House, J.M., Beckermann, C., Smith, T.F.: Effect of centered conducting body on natural convection heat transfer in an enclosure. Numer. Heat Transf. Part A 18, 213–225 (1990)CrossRefGoogle Scholar
  20. 20.
    Saravanan, S., Kandaswamy, P.: Free convection in an inclined enclosure with internal heat generation. In: Proceedings of 4th Asian Computational Fluid Dynamics Conference, Mianyang, China, pp. 664–669 (2000)Google Scholar
  21. 21.
    Keyhani, M., Chen, L., Pitts, D.R.: The aspect ratio effect on natural convection in an enclosure with protruding heat source. ASME J. Heat Transf. 113, 883–891 (1991)CrossRefGoogle Scholar
  22. 22.
    Basak, T., Roy, S., Chamkha, A.J.: A Peclét number based analysis of mixed convection for lid-driven porous square cavities with various heating of bottom wall. Int. Commun. Heat Mass Transf. 39, 657–664 (2012)CrossRefGoogle Scholar
  23. 23.
    Basak, T., Singh, A.K., Sruthi, T.P.A., Roy, S.: Finite element simulations on heat flow visualization and entropy generation during natural convection in inclined square cavities. Int. Commun. Heat Mass Transf. 51, 1–8 (2014)CrossRefGoogle Scholar
  24. 24.
    Ismael, M.A., Pop, I., Chamkha, A.J.: Mixed convection in a lid-driven square cavity with partial slip. Int. J. Thermal Sci. 82, 47–61 (2014)CrossRefGoogle Scholar
  25. 25.
    Bhattacharya, M., Basak, T., Oztop, H.F., Varol, Y.: Mixed convection and role of multiple solutions in lid-driven trapezoidal enclosures. Int. J. Heat Mass Transf. 63, 366–388 (2013)CrossRefGoogle Scholar
  26. 26.
    Saravanan, S., Hakeem, A.K.A., Kandaswamy, P., Lee, J.: Buoyancy convection in a cavity with mutually orthogonal heated plates. Comput. Math Appl. 55, 2903–2912 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kandaswamy, P., Lee, J., Abdul Hakeem, A.K., Saravanan, S.: Effect of baffle–cavity ratios on buoyancy convection in a cavity with mutually orthogonal heated baffles. Int. J. Heat Mass Transf. 51, 1830–1837 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2190 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mohamad, A.A., Viskanta, R.: Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. Appl. Math. Model. 19, 465–472 (1995)CrossRefzbMATHGoogle Scholar
  30. 30.
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)zbMATHGoogle Scholar
  31. 31.
    Basak, T., Roy, S., Balakrishnan, A.R.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49, 4525–4535 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    Amsden, A.A., Harlow, F.H.: A simplified MAC technique for incompressible fluid flow calculations. J. Comput. Phys. 6, 322–325 (1970)CrossRefzbMATHGoogle Scholar
  33. 33.
    Gebhart, B., et al.: Buoyancy-Induced Flows and Transport. Hemisphere, Washington (1988)zbMATHGoogle Scholar
  34. 34.
    Lior, N.: Thermal theory and modeling of solar collectors. In: de Winter, F. (ed.) Solar Collectors, Energy Storage, and Materials. MIT Press, Cambridge (1990)Google Scholar
  35. 35.
    ElMoutaouakil, L., Zrikem, Z., Abdelbaki, A.: Analytical and numerical study of natural convection induced by a volumetric heat generation in inclined cavities asymmetrically cooled by heatfluxes. Appl. Math. Model. 40, 2913–2928 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mahidjiba, A., Mamou, M., Vasseur, P.: Onset of double-di usive convection in a rectangular porous cavity subject to mixed boundary conditions. Int. J. Heat Mass Transf. 43, 1505–1522 (2000)CrossRefzbMATHGoogle Scholar
  37. 37.
    Ismael, M.A., Mansour, M.A., Chamkha, A.J., Rashad, A.M.: Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field. J. Magn. Magn. Mater. 416, 25–36 (2016)CrossRefGoogle Scholar
  38. 38.
    Kimura, S., Bejan, A.: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side. J. Heat Transf. 106, 100 (1984)CrossRefGoogle Scholar
  39. 39.
    Fusegi, T., Hyun, J., Kuwahara, K., Farouk, B.: A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34(6), 1543–1557 (1991)CrossRefGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  • B. Md. Hidayathulla Khan
    • 1
  • K. Venkatadri
    • 1
  • O. Anwar Bég
    • 2
  • V. Ramachandra Prasad
    • 1
  • B. Mallikarjuna
    • 3
  1. 1.Department of MathematicsMadanapalle Institute of Technology and ScienceMadanapalleIndia
  2. 2.Fluid Mechanics, Propulsion and Heat Transfer, Aeronautical and Mechanical Engineering Department, School of Computing, Science and Engineering, Newton BuildingUniversity of SalfordManchesterUK
  3. 3.Department of MathematicsBMS College of EngineeringBangaloreIndia

Personalised recommendations