Advertisement

Generalized Exponential-Type Estimators for Population Mean Taking Two Auxiliary Variables for Unknown Means in Stratified Sampling with Sub-sampling the Non-Respondents

  • Aamir Sanaullah
  • Muhammad Noor ul Amin
  • Muhammad Hanif
  • Nursel Koyuncu
Original Paper
  • 90 Downloads

Abstract

In this paper, we have considered stratified two-phase sampling design with sub-sampling the non-respondents in the presence of non-response for estimating population mean considering the information of two auxiliary variables. The proposed estimators are the exponential function of two auxiliary variables when means of the two auxiliary variables are not known in prior. Further the proposed estimators are provided with their generalized form. The bias and mean square error expressions of the proposed estimators have been derived in two different cases of non-response. The conditions for which proposed estimators are more efficient as compared to some other estimators, have also been discussed in each case of non-response. It is shown that the proposed estimators are more efficient as compared to Hansen and Hurwitz (J Am Stat Assoc 41:517–529, 1946) unbiased estimator and Tabasum and Khan (Assam Stat Rev 20(1):73–83, 2006) two-phase ratio and product estimators modified to the stratified sampling. An empirical study has also been carried out to demonstrate the performances of the estimators.

Keywords

Ratio estimator Product estimator Exponential estimator Non-response Two-phase stratified sampling 

References

  1. 1.
    Ahmed, M.S., Raman, M.S., Hossain, M.I.: Some competitive estimators of finite population variance multivariate auxiliary information. Inf. Manag. Sci. 11(1), 49–54 (2000)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Asghar, A., Sanaullah, A., Hanif, M.: Generalized exponential type estimator for population variance in survey sampling. Revista Colombiana de Estadística 37(1), 211–222 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bahl, S., Tuteja, R.K.: Ratio and product type exponential estimators. Inf. Optim. Sci. 12(1), 159–163 (1991)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cochran, W.G.: Sampling Techniques, 3rd edn. Wiley, New York (1977)zbMATHGoogle Scholar
  5. 5.
    Hansen, M.H., Hurwitz, W.N.: The problem of non-response in sample surveys. J. Am. Stat. Assoc. 41, 517–529 (1946)CrossRefGoogle Scholar
  6. 6.
    Jabeen, R., Sanaullah, A., Hanif, M.: Generalized estimator for estimating population mean under two stage sampling. Pak. J. Stat. 30(4), 465–486 (2014)MathSciNetGoogle Scholar
  7. 7.
    Khare, B.B., Srivastava, S.: Estimation of population mean using auxiliary character in presence of non-response. Natl. Acad. Sci. Lett. India 16(3), 111–114 (1993)zbMATHGoogle Scholar
  8. 8.
    Khare, B.B., Srivastava, S.: Transformed ratio type estimators for the population mean in the presence of non-response. Commun. Stat. Theory Methods 26(7), 1779–1791 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Khare, B.B., Srivastava, U., Kamlesh, K.: Generalized chain type estimators for ratio of two population means using two auxiliary characters in the presence of non-response. Int. J. Stat. Econ. 10(1), 51–64 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Koyuncu, N., Kadilar, C.: Family of estimators of population mean using two auxiliary variables in stratified random sampling. Commun. Stat. Theory Methods 38(14), 2398–2417 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Koyuncu, N.: Families of estimators for population mean using information on auxiliary attribute in stratified random sampling. Gazi Univ. J. Sci. 26(2), 181–193 (2013)MathSciNetGoogle Scholar
  12. 12.
    Little, R.J.A.: Models for non-response in sample surveys. J. Am. Stat. Assoc. 77, 237–250 (1982)CrossRefzbMATHGoogle Scholar
  13. 13.
    Murthy, M.: Sampling Theory and Methods. Calcutta Statistical Publishing Society, Kolkatta (1967)zbMATHGoogle Scholar
  14. 14.
    Noor-ul-Amin, M., Hanif, M.: Some exponential estimators in survey sampling. Pak. J. Stat. 28(3), 367–374 (2012)MathSciNetGoogle Scholar
  15. 15.
    Rao, P.S.R.S.: Ratio estimation with sub sampling the nonrespondents. Surv. Methodol. 12(2), 217–230 (1986)Google Scholar
  16. 16.
    Rao, P.S.R.S.: Ratio and regression estimates with sub-sampling the non-respondent. In: Special Contributed Session of the International Statistical Association Meeting, 2–16 September, Tokyo (1987)Google Scholar
  17. 17.
    Sanaullah, A., Hanif, M., Asghar, A.: Generalized exponential estimators for population variance under two-phase sampling. Int. J. Appl. Comput. Math. 2, 75–84 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sanaullah, A., Khan, A., Ali, H.A., Rajesh, S.: Improved exponential ratio-type estimators in survey sampling. J. Reliab. Stat. Stud. 5(2), 119–132 (2012)Google Scholar
  19. 19.
    Sanaullah, A., Ali, H.A., Noor-ul-amin, M., Hanif, M.: Generalized exponential chain ratio estimators under stratified two-phase sampling. Appl. Math. Comput. 226, 541–547 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Sanaullah, A., Noor-ul-Amin, M., Hanif, M.: Generalized exponential-type ratio-cum-ratio and product-cum-product estimators for population mean in the presence of non-response under stratified two-phase random sampling. Pak. J. Stat. 31(1), 71–94 (2015)MathSciNetGoogle Scholar
  21. 21.
    Samiuddin, M., Hanif, M.: Estimation of population mean in single and two phase sampling with or without additional information. Pak. J. Stat. 23(2), 99–118 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sharma, P., Verma, H.K., Sanaullah, A., Singh, R.: Some exponential ratio-product type estimators using information on auxiliary attributes under second order approximation. Int. J. Stat. Econ. 12(3), 58–66 (2013)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Singh, B.K., Choudhury, S.: Exponential chain ratio and product type estimators for finite population mean under double sampling scheme. Glob. J. Sci. Front. Res. Math. Decis. Sci. 12(6), 13–24 (2012)Google Scholar
  24. 24.
    Singh, H.P., Goli, R., Tarray, T.A.: Study of Yadav and Kadilar’s improved exponential type ratio estimator of population variance in two-phase sampling. Hacettepe J. Math. Stat. 44(5), 1257–1270 (2015)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Singh, H.P., Sharma, N., Tarray, T.A.: An efficient class of two-phase exponential ratio and product-type estimators for estimating the finite population mean. J. Stat. Appl. Prob. Lett. 2(1), 71–88 (2015)Google Scholar
  26. 26.
    Singh, P., Vishwakarma, K.: Modified exponential ratio and product estimators for finite population mean in double sampling. Aust. J. Stat. 36, 217–225 (2007)CrossRefGoogle Scholar
  27. 27.
    Singh, R., Kumar, M.: Improved estimators of population mean using two auxiliary variables in stratified random sampling. Pak. J. Stat. Oper. Res. 8(1), 65–72 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tabasum, R., Khan, I.A.: Double sampling for ratio estimation with non-response. J. Ind. Soc. Agril. Stat. 58(3), 300–306 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Tabasum, R., Khan, I.A.: Double sampling ratio estimator for the population mean in presence of non-response. Assam Stat. Rev. 20(1), 73–83 (2006)Google Scholar
  30. 30.
    Tarray, T. A.: Statistical Sample Survey Methods and Theory. Elite Publishers (onlinegatha.com), INDIA, ISBN: 978-93-86163-07-03 (2016)Google Scholar
  31. 31.
    Upadhyaya, L.N., Singh, H.P., Chatterjee, S., Yadav, R.: Improved ratio and product exponential type estimators. J. Stat. Theoy Pract. 5(2), 285–302 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Yasmeen, U., Noor ul Amin, M., Hanif, M.: Generalized exponential estimators of finite population mean using transformed auxiliary variables. Int. J. Appl. Comput. Math. 1, 589–598 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Aamir Sanaullah
    • 1
  • Muhammad Noor ul Amin
    • 1
  • Muhammad Hanif
    • 2
  • Nursel Koyuncu
    • 3
  1. 1.Department of StatisticsCOMSATS Institute of Information TechnologyLahorePakistan
  2. 2.Department of StatisticsNational College of Business Administration and EconomicsLahorePakistan
  3. 3.Department of StatisticsHacettepe UniversityBeytepeTurkey

Personalised recommendations