Skip to main content
Log in

Numerical Investigation of Steady-State Heat Conduction in Arbitrary Shaped Heat Exchanger Tubes with Mutliply Connected Cross Sections

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper outlines a numerical method called boundary element method (BEM) which is employed to study heat transfer through the walls of arbitrary shaped heat exchanger tubes having arbitrary shaped holes. The method is implemented for two different cases to obtain the approximate solution of the two dimensional Laplace equation. For both the cases, the inner surfaces are maintained at a constant temperature. However, the outermost periphery is subjected to a constant temperature in the first case and kept at convective condition in the second case. Here the discretization of the boundary produces a system of equations which on solving produce the expression for temperature. The results predicted by BEM are validated with those predicted by Ansys Fluent®. The remarkable accuracy of the results with those obtained from Fluent shows the capability of the method to successfully handle the considered steady-state conduction problem in heat exchanger tubes of multiply connected cross sections. This article uses BEM to study conduction problems in multiply connected exchanger tubes. This work may be extended to study 3D heat conduction through multiply connected tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

References

  1. Atalay, M.A., Aydin, E.D., Aydin, M.: Multi-region heat conduction problems by boundary element method. Int. J. Heat Mass. Transf. 47(6–7), 1549–1553 (2004)

    Article  MATH  Google Scholar 

  2. Ang, W.T.: A Beginner’s Course in Boundary Element Methods. Universal Publishers, Boca Raton (2007)

    Google Scholar 

  3. Ang, W.T.: Non-steady-state heat conduction across an imperfect interface: a dual-reciprocity boundary element approach. Eng. Anal. Bound. Elem. 30, 781–789 (2006)

    Article  MATH  Google Scholar 

  4. Azevedo, J.P.S., Wrobel, L.C.: Non- linear heat conduction in composite bodies: a boundary element formulation. Int. J. Numer. Meth. Eng. 26(1), 19–38 (1988)

    Article  MATH  Google Scholar 

  5. Bouris, D., Papadakis, G., Bergeles, G.: Numerical evaluation of alternate tube configurations for particle deposition rate reduction in heat exchanger tube bundles. Int. J. Heat Fluid Fl. 22(5), 525–536 (2001)

    Article  Google Scholar 

  6. Brackbill, J.U., Kothe, D.B., Ruppel, H.M.: FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun. 48(1), 25–38 (1988)

    Article  Google Scholar 

  7. DeSilva, S.J., Chan, C.L., Chandra, A., Lim, J.: Boundary element method analysis for the transient conduction-convection in 2-D with spatially variable convective velocity. Appl. Math. Model. 22(1–2), 81–112 (1998)

    Article  MATH  Google Scholar 

  8. DeSilva, S.J., Chan, C.L.: Coupled boundary element method and finite difference method for the heat conduction in laser processing. Appl. Math. Model. 32(11), 2429–2458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, C.Y.: Shape optimizations of inhomogeneities of two dimensional (2D) and three dimensional (3D) steady-state heat conduction problems by the boundary element method. Eng. Anal. Bound. Elem. 60, 67–80 (2015)

    Article  MathSciNet  Google Scholar 

  10. Erhart, K., Divo, E., Kassab, A.J.: A parallel domain decomposition boundary element method approach for the solution of large scale transient heat conduction problems. Eng. Anal. Bound. Elem. 30(7), 553–563 (2006)

    Article  MATH  Google Scholar 

  11. Gawande, S.H., Wankhede, S.D., Yerrawar, R.N., Sonawane, V.J., Ubarhande, U.B.: Design and development of shell & tube heat exchanger for beverage. Mod. Mech. Eng. 2(04), 121–125 (2012)

    Article  Google Scholar 

  12. Gray, L.J., Lutz, E.D.: On the treatment of corners in the boundary element method. J. Comput. Appl. Math. 32(3), 369–386 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grieb, H., Schlosser, W.: Shaped tube with elliptical cross-section for tubular heat exchangers and a method for their manufacture. United States Patent US 4,766,953, 30 Aug 1988

  14. Hantila, F., Vasiliu, M., Maricaru, M., Della, Giacomo A.: Boundary element method for multiply connected domains. J. Mater. Process Tech. 161(1), 315–319 (2005)

    Article  Google Scholar 

  15. Kolodziej, J.A., Strek, T.: Analytical approximations of the shape factors for conductive heat flow in circular and regular polygonal crosssections. Int. J. Heat Mass Transf. 44, 999–1012 (2001)

    Article  MATH  Google Scholar 

  16. Königsberger, K.: Analysis 2. Springer, New York (2013)

    MATH  Google Scholar 

  17. Lallemand, P., Luo, L.S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184(2), 406–421 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lv, J.H., Feng, X.T., Li, S.J., Jiang, Q., Guo, H.S.: Solid analysis of micron-sized thin structures with BEM for steady-state heat conduction. Eng. Anal. Bound. Elem. 71, 11–19 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: A comparison of boundary element method formulations for steady-state anisotropic heat conduction problems. Eng. Anal. Bound. Elem. 25(2), 115–128 (2001)

    Article  MATH  Google Scholar 

  20. Mera, N.S., Elliott, L., Ingham, D.B., Lesnic, D.: The boundary element solution of the Cauchy steady heat conduction problem in an anisotropic medium. Int. J. Numer. Meth. Eng. 49(4), 481–499 (2000)

    Article  MATH  Google Scholar 

  21. Moharana, M.K., Das, P.K.: Heat conduction through heat exchanger tubes of noncircular cross section. J. Heat Transf. 130(1), 011301 (2008)

    Article  Google Scholar 

  22. Ochiai, Y., Kitayama, Y.: Three-dimensional unsteady heat conduction analysis by triple-reciprocity boundary element method. Eng. Anal. Bound. Elem. 33(6), 789–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ochiai, Y.: Two-dimensional steady heat conduction in functionally gradient materials by triple-reciprocity boundary element method. Eng. Anal. Bound. Elem. 28(12), 1445–1453 (2004)

    Article  MATH  Google Scholar 

  24. Pérez-Segarra, C.D., Oliet, C., Oliva, A.: Thermal and fluid dynamic simulation of automotive fin-and-tube heat exchangers, part 1: mathematical model. Heat Tansf. Eng. 29(5), 484–494 (2008)

    Article  Google Scholar 

  25. Rana, S.K., Jena, A.: A BEM formulation of two dimensional steady-state heat conduction in exchanger tubes of arbitrary cross sections. Int. J. Heat Mass Transf. 106, 195–211 (2017)

    Article  Google Scholar 

  26. Ruth, E.K.: Experiments on a crossflow heat exchanger with tubes of lenticular shape. J. Heat Transf. 105(3), 571–575 (1983)

    Article  Google Scholar 

  27. Rühlich, I., Quack, H.: Investigations on regenerative heat exchangers. Cryocoolers 10, pp. 265–274. Springer, New York (2002)

    Google Scholar 

  28. Rühlich, I., Quack, H.: New regenerator design for cryocoolers. In: 17th International Cryogenic Engineering Conference, Bournemouth, England, pp. 291–294 (1998)

  29. Shukla, K.N.: Heat pipe for aerospace applications—an overview. J. Electr. Cool. Therm. Control 5(1), 1–14 (2015)

    Article  Google Scholar 

  30. Tanaka, Y., Honma, T., Kaji, I.: On mixed boundary element solutions of convection–diffusion problems in three dimensions. Appl. Math. Model. 10(3), 170–175 (1986)

    Article  MATH  Google Scholar 

  31. Vishwakarma, V., Das, A.K., Das, P.K.: Steady-state conduction through 2D irregular bodies by smoothed particle hydrodynamics. Int. J. Heat Mass Transf. 54(1), 314–325 (2011)

    Article  MATH  Google Scholar 

  32. Wei, W., Pellischek, G.: Teardrop-shaped heat exchange tube and its process of manufacture. United States Patent US 5,355,946, 18 Oct 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S.K., Mishra, B. & Jena, A. Numerical Investigation of Steady-State Heat Conduction in Arbitrary Shaped Heat Exchanger Tubes with Mutliply Connected Cross Sections. Int. J. Appl. Comput. Math 4, 21 (2018). https://doi.org/10.1007/s40819-017-0456-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0456-8

Keywords

Navigation