Advertisement

Cubic Interpolation: A Line Search Technique for Fuzzy Optimization Problems

  • Debdas GhoshEmail author
  • Debdulal Ghosh
Original Paper
  • 79 Downloads

Abstract

This article continues the research on line search techniques for fuzzy optimization problems. Previously, in Ghosh and Chakraborty (Int J Appl Comput Math 3(2):527–547, 2017), a quadratic interpolation technique for fuzzy optimization problem was studied. In this article, we propose a cubic interpolation technique. For the optimality concept, a partial ordering of fuzzy numbers is used. In order to derive the cubic interpolation method, the generalized Hukuhara difference between a pair of fuzzy numbers and the generalized Hukuhara differentiability for fuzzy functions are applied. The convergence analysis of the proposed technique is also exhibited. It is found that the developed method has quadratic rate of convergence. A detailed numerical example is included to explore the developed technique. The iteration points in the example are also pictorially shown in detail.

Keywords

Line search technique Cubic interpolation method Generalized Hukuhara differentiability Fuzzy optimization 

AMS Mathematics Subject Classification

90C70 90C29 

Notes

Acknowledgements

The first author gratefully acknowledges the financial support through Early Career Research Award (ECR/2015/000467), Science and Engineering Research Board, Government of India.

References

  1. 1.
    Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory, vol. 251. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Banks, H.T., Jacobs, M.Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246–272 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, Hoboken (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151(3), 581–599 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chalco-Cano, Y., Silva, G.N., Rufián-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cheng, C.-H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95, 307–317 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ghosh, D.: A Newton method for capturing efficient solutions of interval optimization problems. Opsearch 53, 648–665 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghosh, D.: Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. J. Appl. Math. Comput. 53, 709–731 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ghosh, D., Chakraborty, D.: A method to capture the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets Syst. 272, 1–29 (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ghosh, D., Chakraborty, D.: A new method to obtain fuzzy Pareto set of fuzzy multi-criteria optimization problems. J. Intel. Fuzzy Syst. 26, 1223–1234 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ghosh, D., Chakraborty, D.: Fuzzy ideal cone: A method to obtain complete fuzzy non-dominated set of fuzzy multi-criteria optimization problems with fuzzy parameters. In: Proceedings of IEEE international conference on fuzzy systems, FUZZ IEEE 2013, IEEE Xplore, pp. 1–8, (2013)Google Scholar
  18. 18.
    Ghosh, D., Chakraborty, D.: Quadratic interpolation technique to minimize univariable fuzzy functions. Int. J. Appl. Comput. Math. 3(2), 527–547 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18(1), 31–43 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hall, K.R., Hull, D.G.: Interpolation in numerical optimization. AIAA J. 13(2), 231–232 (1975)CrossRefGoogle Scholar
  21. 21.
    Jain, M.K., Iyengar, S.R.K., Jain, R.K.: Numerical Methods for Scientific and Engineering Computation, 6th edn. New Age International Publishers, New Delhi (2012)zbMATHGoogle Scholar
  22. 22.
    Lee-Kwang, H., Lee, J.-H.: A method for ranking fuzzy numbers and its application to decision-making. IEEE Trans. Fuzzy Syst. 7(6), 677–685 (1999)CrossRefGoogle Scholar
  23. 23.
    Lious, T.S., Wang, M.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 5, 247–255 (1992)MathSciNetGoogle Scholar
  24. 24.
    Lodwick, W.A., Kacprzyk, J.: Fuzzy Optimization: Recent Advances and Applications, vol. 254. Physica-Verlag, New York (2010)zbMATHGoogle Scholar
  25. 25.
    Mitchell, H.B., Schaefer, P.A.: On ordering fuzzy numbers. Int. J. Intel. Syst. 15, 981–993 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  27. 27.
    Peng, J., Liu, H., Gang, S.: Ranking fuzzy variables in terms of credibility measure, In: Fuzzy Syst. Knowledge Discovery, Wang, L., et al. (eds.) Springer, vol. 4223, Lecture Notes in Computer Science, pp. 217–220, (2006)Google Scholar
  28. 28.
    Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156, 867–881 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pirzada, U.M., Vakaskar, D.C.: Existence of Hukuhara differentiability of duzzy-Valued Functions. Journal of the Indian Math. Soc. 84, 239–254 (2017)CrossRefGoogle Scholar
  30. 30.
    Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91(2), 552–558 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ramík, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Ramík, J.: Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst. 158, 1873–1881 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Słowínski, R.: Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Kluwer, Boston (1998)CrossRefzbMATHGoogle Scholar
  34. 34.
    Spitzbart, A.: A generalization of Hermite’s interpolation formula. Am. Math. Mon. 67(1), 42–46 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sun, H., Wu, J.: A new approach for ranking fuzzy numbers based on fuzzy simulation analysis method. Appl. Math. Comput. 174(1), 755–767 (2006)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities. Fuzzy Sets Syst. 118, 375–385 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, Z.-X., Liu, Y.-L., Fan, Z.-P., Feng, B.: Ranking L–R fuzzy number based on deviation degree. Inform. Sci. 179, 2070–2077 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wenyu, S., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, Berlin (2006)zbMATHGoogle Scholar
  39. 39.
    Wu, H.-C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Mak. 2, 61–73 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yager, R.R., Dimitar, F.: On ranking fuzzy numbers using valuations. Int. J. Intel. Syst. 14, 1249–1268 (1999)CrossRefzbMATHGoogle Scholar
  41. 41.
    Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst. 116, 275–288 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications, 4th edn. Springer, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer (India) Private Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology (BHU) VaranasiVaranasiIndia
  2. 2.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations