Skip to main content
Log in

Qualitative Analysis of an Additional Food Provided Predator–Prey Model in the Presence of Allee Effect

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present paper analyzes a predator–prey model in which the predator is provided with additional food and subjected to Allee effect. The conditions for the existence of equilibrium points and their local stability have been investigated. Under certain conditions, it is found that the solutions depend highly on the initial values. The existence of the bifurcations such as Bogdanov–Takens, Hopf–Andronov, Transcritical and Saddle-node, for the system have been shown. Further, the appearance of homoclinic loop, emerging through Hopf-bifurcation has been shown through numerical simulation. Numerical simulations have been proposed to confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1926)

    MATH  Google Scholar 

  2. Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together. J. Cons. Perm. Int. Entertain. Mer. 3, 3–51 (1926)

    Article  Google Scholar 

  3. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  4. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 46, 1–60 (1965)

    Google Scholar 

  5. Hassell, M.P., May, R.M.: Stability in insect host-parasite models. J. Anim. Ecol. 42, 693–726 (1973)

    Article  Google Scholar 

  6. Liu, X., Chen, L.: Complex dynamics of Holling type II Lotka–Volterra predator–prey system with impulsive perturbations on the predator. Chaos Solitons Fractals 16, 311–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhang, S., Chen, L.: A Holling II functional response food chain model with impulsive perturbations. Chaos Solitons Fractals 24, 1269–1278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, S., Tan, D., Chen, L.: Chaos in periodically forced Holling type II predator–prey system with impulsive perturbations. Chaos Solitons Fractals 28, 367–376 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, B., Teng, Z., Chen, L.: Analysis of a predator–prey model with Holling II functional response concerning impulsive control strategy. J. Comput. Appl. Math. 193, 347–362 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sagamiko, T.D., Shaban, N., Nahonyo, C.L., Makinde, O.D.: Optimal control of a threatened wildebeest-lion prey–predator system in the Serengeti ecosystem. Open J. Ecol. 5(4), 110–119 (2015)

    Article  Google Scholar 

  11. Strauss, S.Y.: Indirect effects in community ecology: their definition, study and importance. Trends Ecol. Evolut. 6, 206–210 (1991)

    Article  Google Scholar 

  12. Gurubilli, K.K., Srinivasu, P.D.N., Banerjee, M.: Global dynamics of a prey–predator model with Allee effect and additional food for the predators. Int. J. Dyn. Control (2016). doi:10.1007/s40435-016-0234-1

    Google Scholar 

  13. Kar, T.K., Ghosh, B.: Sustainability and optimal control of an exploited prey–predator system through provision of alternative food to predator. BioSystems 109, 220–232 (2012)

    Article  Google Scholar 

  14. Spencer, P.D., Collie, J.S.: A simple predator–prey model of exploited marine fish populations incorporating alternative prey. ICES J. Mar. Sci. 53, 615–628 (1996)

    Article  Google Scholar 

  15. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol. 72(1), 111–120 (2007)

    Article  MATH  Google Scholar 

  16. Sen, M., Srinivasu, P.D.N., Banerjee, M.: Global dynamics of an additional food provided predator–prey system with constant harvest in predators. Appl. Math. Comput. 250, 193–211 (2015)

    MATH  MathSciNet  Google Scholar 

  17. Prasad, B.S.R.V., Banerjee, M., Srinivasu, P.D.N.: Dynamics of additional food provided predator–prey system with mutually interfering predators. Math. Biosci. 246, 176–190 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kumar, D., Chakrabarty, S.P.: A predator–prey model with additional food supply to predators: dynamics and applications. Comput. Appl. Math. (2016). doi:10.1007/s40314-016-0369-x

    Google Scholar 

  19. Ghosh, J., Sahoo, B., Poria, S.: Prey–predator dynamics with prey refuge providing additional food to predator. Chaos Solitons Fractals 96, 110–119 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  20. Allee, W.C.: Animal Aggregations, a Study in General Sociology. University of Chicago Press, Chicago (1931)

    Book  Google Scholar 

  21. Stephens, P.A., Sutherland, W.J., Freckleton, R.P.: What is the Allee effect? Oikos 87, 185–190 (1999)

    Article  Google Scholar 

  22. Wang, G., Liang, X.G., Wang, F.Z.: The competitive dynamics of populations subject to an Allee effect. Ecol. Model. 124, 183–192 (1999)

    Article  Google Scholar 

  23. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3, 481–538 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Courchamp, F., Clutton-brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410 (1999)

    Article  Google Scholar 

  25. Bazykin, A.D., Berezovskaya, F.S., Isaev, A.S., Khlebopros, R.G.: Dynamics of forest insect density: bifurcation approach. J. Theor. Biol. 186, 267–278 (1997)

    Article  Google Scholar 

  26. Bazykin, A.D.: Nonlinear Dynamics of Interacting Populations. World Scientific, Singapore (1998)

    Book  Google Scholar 

  27. Sen, M., Banerjee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent preypredator model with the Allee effect. Ecol. Complex. 11, 12–27 (2012)

    Article  Google Scholar 

  28. Zu, J., Mimura, M.: The impact of Allee effect on a predatorprey system with Holling type II functional response. Appl. Math. Comput. 217, 3542–3556 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Cai, Y., Zhao, C., Wang, W., Wang, J.: Dynamics of a Leslie–Gower predator–prey model with additive Allee effect. Appl. Math. Model. 39(7), 2092–2106 (2015)

    Article  MathSciNet  Google Scholar 

  30. Berec, L., Angulo, E., Courchamp, F.: Multiple Allee effects and population management. Trends Ecol. Evol. 22(4), 185–91 (2007)

    Article  Google Scholar 

  31. Pal, P.J., Saha, T.: Qualitative analysis of a predator–prey system with double Allee effect in prey. Chaos Solitons Fractals 73, 36–63 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Singh, M.K., Bhadauria, B.S., Singh, B.K.: Bifurcation analysis of modified Leslie-Gower predator–prey model with double Allee effect. Ain Shams Eng. J. (2016). doi:10.1016/j.asej.2016.07.007

    Google Scholar 

  33. Laia, X., Liua, S., Linb, R.: Rich dynamical behaviours for predator–prey model with weak Allee effect. Appl. Anal. 89(8), 1271–1292 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wang, X., Cai, Y., Ma, H.: Dynamics of a diffusive predator–prey model with Allee effect on predator. Discrete Dyn. Nat. Soc. Article ID 984960 (2013)

  35. Wu, R., Liu, X.: Dynamics of a predator–prey system with a mate-finding Allee effect. Abstr. Appl. Anal. Article ID 673424 (2014)

  36. Feng, P., Kang, Y.: Dynamics of a modified Leslie–Gower model with double Allee effects. Nonlinear Dyn. 80, 1051–1062 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  37. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn Boston, New York (1982)

    MATH  Google Scholar 

  38. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  39. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory, Tim Clutton–Brock Grundlehren Mathematischen Wissenschaften. Springer, New York (1983)

    Google Scholar 

  40. Makinde, O.D.: Solving ratio-dependent predator–prey system with constant effort harvesting using Adomian decomposition method. Appl. Math. Comput. 186, 17–22 (2007)

    MATH  MathSciNet  Google Scholar 

  41. Srinivasu, P.D.N., Prasad, B.S.R.V.: Time optimal control of an additional food provided predator–prey system with applications to pest management and biological conservation. J. Math. Biol. 60, 591–613 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Srinivasu, P.D.N., Prasad, B.S.R.V.: Role of quantity of additional food to predators as a control in predator–prey systems with relevance to pest management and biological conservation. Bull. Math. Biol. 73, 2249–2276 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Manoj Kumar Singh gratefully acknowledges the financial assistance from Babasaheb Bhimrao Ambedkar University, Lucknow, India as a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Ethics declarations

Conflict of interest

On behalf of the co-author, I hereby declare that we do not have any conflict of interest in publishing the manuscript of the paper entitled “Qualitative analysis of an additional food provided predator–prey model in the presence of Allee-effect” by Manoj Kumar Singh and B.S. Bhadauria in International Journal of Applied and Computational Mathematics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Bhadauria, B.S. Qualitative Analysis of an Additional Food Provided Predator–Prey Model in the Presence of Allee Effect. Int. J. Appl. Comput. Math 3 (Suppl 1), 1173–1195 (2017). https://doi.org/10.1007/s40819-017-0409-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0409-2

Keywords

Navigation