Skip to main content

Some New Exact Solutions of the Modified KdV Equation Using Lie Point Symmetry Method

Abstract

In this paper, we obtain some new exact solutions of the modified Korteweg de Vries equation using Lie point symmetry method. The new obtained solutions are doubly periodic and periodic solutions. We confirm that this equation possesses many unusual features of distinct solutions. To our knowledge, the obtained solutions are new.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wazwaz, A.M.: A modified KdV-type equation that admits a variety of travelling wave solutions: kinks, solitons, peakons and cuspons. Phys. Scr. 86(4), 045501 (2012)

    Article  MATH  Google Scholar 

  2. Bogning, J.R.: Pulse soliton solutions of the modified KdV and born-infeld equations. Int. J. Mod. Nonlinear Theory Appl. 2, 135–140 (2013)

    Article  Google Scholar 

  3. Günera, Ö., Bekirb, A., Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Opt. Int. J. Light Electron Opt. 127(1), 131–134 (2016)

    Article  Google Scholar 

  4. Mothibi, D.M., Khalique, C.M.: On the exact solutions of a modified Kortweg de Vries type equation and higher-order modified Boussinesq equation with damping term. Adv. Differ. Equ. 2013, 166 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hydon, P.E.: Symmetry Methods for Differential Equations. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  6. Baumann, G.: Symmetry Analysis of Differential Equations with Mathematica. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  7. Abdel Kader, A.H., Abdel Latif, M.S., Nour, H.M.: General exact solution of the fin problem with the power law temperature—dependent thermal conductivity. Math. Methods Appl. Sci. 39, 1513–1521 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Abdel Kader, A.H., Abdel Latif, M.S., Nour, H.M.: Exact solutions of a third-order ODE from thin film flow using \(\lambda \)-symmetry method. Int. J. Nonlinear Mech. 55, 147–152 (2013)

    Article  Google Scholar 

  9. Tian, L.X., Yin, J.L.: Stability of multi-compacton solutions and Backlund transformation in K(m, n,1). Chaos Solitons Fractals 23, 159–169 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  11. Zhou, Z.J., Fu, J.Z., Li, Z.B.: Maple packages for computing Hirota’s bilinear equation and multisoliton solutions of nonlinear evolution equations. Appl. Math. Comput. 217(1), 92–104 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Abdel Latif, M.S., Abdel Kader, A.H.: Comment on: “Exact solutions of the generalized—dimensional nonlinear evolution equations via the modified simple equation method” [Computers & Mathematics with Applications Volume 69, Issue 5, March 2015, Pages 390–397]. Comput. Math. Appl. 70(10), 2616–2617 (2015)

    Article  MathSciNet  Google Scholar 

  13. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics—An Introduction. Wiley, New York (1989)

    MATH  Google Scholar 

  14. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Abdel Kader.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel Kader, A.H., Abdel Latif, M.S. & Nour, H.M. Some New Exact Solutions of the Modified KdV Equation Using Lie Point Symmetry Method. Int. J. Appl. Comput. Math 3, 1163–1171 (2017). https://doi.org/10.1007/s40819-017-0408-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0408-3

Keywords

  • Modified Korteweg de Vries equation
  • Exact solution
  • Periodic solutions
  • Lie point symmetry