Skip to main content
Log in

Effects of Chemical Reaction and Heat Source on MHD Oscillatory Flow of a Viscoelastic Fluid in a Vertical Porous Channel

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the MHD oscillatory flow of an incompressible and electrically conducting visco-elastic fluid in a vertical channel in the presence of chemical reaction and heat source. The unsteadiness in the flow is due to an oscillatory pressure gradient across the ends of the channel. A closed form solutions for velocity, temperature and concentration profiles as well as skin friction coefficient, rate of heat and mass transfers are obtained by using appropriate mathematical techniques. The analytical outcomes are assessed numerically and then are presented graphically to confer the effects of diverse parameters arriving in the problem. It is witnessed that the fluid velocity profile is parabolic in nature with extreme scale along the channel centerline and least at the walls and therefore, the oscillatory flow enhance the heat transport system by various magnitudes as compared with normal conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(B_0\) :

Uniform magnetic field

\(C^{*}\) :

Concentration

\(c_p \) :

Specific heat at constant pressure

\(C_0 \) :

Uniform concentration

d :

Mean half width of the channel

\(D_a \) :

Darcy number

g :

Acceleration due to gravity

\(G_r \) :

Grashof number

\(G_c \) :

Modified Grashof number

Q :

Heat source parameter

\(H_0 \) :

Intensity of magnetic field

Kr :

Chemical reaction parameter

k :

Thermal conductivity

\(K^{*}\) :

Permeability of the porous medium

M :

Hartmann number

R :

Radiation parameter

Nu :

Nusselt number

\(P_e \) :

Peclet number

\(p^{*}\) :

The pressure

q :

Radiative heat flux

\(R_e \) :

Reynolds number

S :

Porous medium shape factor

\(\theta \) :

Fluid temperature

\(\beta _T \) :

Coefficient of thermal expansion

\(\beta _C \) :

Coefficient of mass expansion

\(\mu \) :

Magnetic permeability

\(\sigma \) :

Electric conductivity

\(\rho \) :

Fluid density

\(\omega ^{*}\) :

Frequency of oscillations

\(\vartheta _1 \) :

Kinematic viscosity coefficient

\(\vartheta _2 \) :

Viscoelasticity

\(\gamma \) :

Viscoelastic parameter

\(\lambda \) :

Pressure gradient

\(\alpha \) :

Mean radiation absorption coefficient

\(\tau \) :

Skin friction

Sc :

Schmidt number

Sh :

Sherwood number

\(T^{*}\) :

Temperature

\(T_0 \) :

Uniform temperature

\(t^{*}\) :

Time

\(u^{*}\) :

Axial velocity

U :

Flow mean velocity

References

  1. Seth, G.S., Singh, J.K., Mahato, G.K.: Effects of Hall current and rotation on unsteady hydromagnetic couette flow within a porous channel. Int. J. Appl. Mech. 4(2), 25 (2012)

    Article  Google Scholar 

  2. Satya Narayana, P.V., Venkateswarlu, B., Venkataramana, S.: Effects of Hall current and radiation absorption on MHD micropolar fluid in a rotating system. Ain Shams Eng. J. 4(4), 843–854 (2013)

    Article  Google Scholar 

  3. Seth, G.S., Kumbhakar, B., Sharma, R.: Unsteady hydromagnetic natural convection flow of a heat absorbing fluid within a rotating vertical channel in porous medium with Hall effects. J. Appl. Fluid Mech. 8(4), 767–779 (2015)

    Article  Google Scholar 

  4. Khan, S.M., Ali, N., Abbas, Z.: Hydromagnetic flow and heat transfer over a porous oscillating stretching surface in a viscoelastic fluid with porous medium. PLoS ONE 10(12), e0144299 (2015)

    Article  Google Scholar 

  5. Pradip Kumar, G., Abhay Kumar, J.: Heat and mass transfer in visco-elastic fluid through rotating porous channel with Hall effect. Open J. Fluid Dyn. 6, 11–29 (2016)

    Article  Google Scholar 

  6. Satya Narayana, P.V., Venkateswarlu, B.: Heat and mass transfer on MHD nanofluid flow past a vertical porous plate in a rotating system. Front. Heat Mass Transf. 7, 8 (2016)

    Google Scholar 

  7. Ali, N., Khan, S.U., Sajid, M., Abbas, Z.: Slip effects in the hydromagnetic flow of a viscoelastic fluid through porous medium over a porous oscillatory stretching sheet. J. Porous Media 20(3), 249–262 (2017)

    Article  Google Scholar 

  8. Bilal, S., Malik, M.Y., Awais, M., Khalil-ur-Rehman, A.H, Khan, I.: Numerical investigation on 2D viscoelastic fluid due to exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory. Neural Comput. Appl. 1–10. doi:10.1007/s00521-016-2832-4 (2017)

  9. Dey, D.: Visco-elastic fluid flow through an annulus with relaxation, retardation effects and external heat source/sink. Alex. Eng. J. 1–7. doi:10.1016/j.aej.2017.01.039 (2017)

  10. Seth, G.S., Singh, R., Mahto, N.: Oscillatory hydromagnetic couette flow in a rotating system. Indian J. Technol. 26(7), 329–33 (1988)

    MATH  Google Scholar 

  11. Makinde, O.D., Mhone, P.Y.: Heat transfer to MHD oscillatory flow in a channel filled with porous medium. Rom. J. Phys. 50, 931 (2005)

    Google Scholar 

  12. Singh, K.D.: Visco-elastic mixed convection MHD oscillatory flow through a porous medium filled in a vertical channel. Int. J. Phys. Math. Sci. 3, 194–205 (2012)

    Google Scholar 

  13. Choudhury, R., Das, U.J.: Heat transfer to MHD oscillatory viscoelastic flow in a channel filled with porous medium. Phys. Res. Int. 2012, 1–5 (2012)

  14. Seth, G.S., Hussain, S.M., Sarkar, S.: Hydromagnetic oscillatory couette flow in rotating system with induced magnetic field. Appl. Math. Mech. 35(10), 1331–1344 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Olajuwon, B.I., Oahimire, J.I., Ferdow, M.: Effect of thermal radiation and Hall current on heat and mass transfer of unsteady MHD flow of a visco-elastic micropolar fluid through a porous medium. Eng. Sci. Technol. Int. J. 17(4), 185–193 (2014)

    Article  Google Scholar 

  16. Satya Narayana, P.V., Venkateswarlu, B.: MHD visco-elastic fluid flow over a continuously moving vertical surface with chemical reaction. Walailak J. Sci. Technol. 12(9), 775–783 (2015)

    Google Scholar 

  17. Ali, N., Khan, S.U., Abbas, Z.: Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Z. Naturforschung A 70(7), 567–576 (2015)

    Google Scholar 

  18. Ali, N., Khan, S.U., Abbas, Z., Sajid, M.: Soret and Dufour effects on hydromagnetic flow of viscoelastic fluid over porous oscillatory stretching sheet with thermal radiation. J. Braz. Soc. Mech. Sci. Eng. 38, 2533–2546 (2016)

    Article  Google Scholar 

  19. Matias, A., Sanchez, S., Mendez, F., Bautista, O.: Influence of slip wall effect on a non-isothermal electro-osmotic flow of a viscoelastic fluid. Int. J. Therm. Sci. 98, 352–363 (2015)

    Article  Google Scholar 

  20. Matin, M.H., Khan, W.A.: Electrokinetic effects on pressure driven flow of visco-elastic fluids in nanofluidic channels with Navier slip condition. J. Mol. Liq. 215, 472–480 (2016)

    Article  Google Scholar 

  21. Zhao, J., Zheng, L., Zhang, X., Liu, F.: Unsteady natural convection boundary layer heat transfer of fractional Maxwell viscoelastic fluid over a vertical plate. Int. J. Heat Mass Transf. 97, 760–766 (2016)

    Article  Google Scholar 

  22. Sivaraj, R., Rushi Kumar, B.: Chemically reacting dusty visco-elastic fluid flow in an irregular channel with convective boundary. Ain Shams Eng. J. 4(1), 93–101 (2013)

    Article  Google Scholar 

  23. Nayak, M.K., Dash, G.C., Singh, L.P.: Effects of chemical reaction on MHD flow of a viscoelastic fluid through porous medium. J. Appl. Anal. Comput. 4(4), 367–381 (2014)

    MATH  MathSciNet  Google Scholar 

  24. Jena, S., Dash, G.C., Mishra, S.R.: Chemical reaction effect on MHD visco-elastic fluid flow over a vertical stretching sheet with heat source/sink. Ain Shams Eng. J. 1–9. doi:10.1016/j.asej.2016.06.014 (2016)

  25. Misra, J.C., Adhikary, S.D.: MHD oscillatory channel flow, heat and mass transfer in a physiological fluid in presence of chemical reaction. Alex. Eng. J. 55, 287–297 (2016)

    Article  Google Scholar 

  26. Satya Narayana, P.V., Venkateswarlu, B., Devika, B.: Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel. Ain Shams Eng. J. 7, 1079–1088 (2016)

    Article  Google Scholar 

  27. Umavathi, J.C., Sheremet, M.A., Mohiuddin, S.: Combined effect of variable viscosity and thermal conductivity on mixed convection flow of a viscous fluid in a vertical channel in the presence of first order chemical reaction. Eur. J. Mech. B Fluids 58, 98–108 (2016)

    Article  MathSciNet  Google Scholar 

  28. Elbashbeshy, E.M.A.: Heat and mass transfer along a vertical plate with variable surface tension and concentration in the presence of the magnetic field. Int. J. Eng. Sci. 35, 515–22 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkateswarlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkateswarlu, B., Narayana, P.V.S. & Devika, B. Effects of Chemical Reaction and Heat Source on MHD Oscillatory Flow of a Viscoelastic Fluid in a Vertical Porous Channel. Int. J. Appl. Comput. Math 3 (Suppl 1), 937–952 (2017). https://doi.org/10.1007/s40819-017-0391-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0391-8

Keywords

Navigation