Skip to main content
Log in

Operational Versus Umbral Methods and the Borel Transform

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Integro-differential methods, currently exploited in calculus, provide an inexhaustible source of tools to be applied to a wide class of problems, involving the theory of special functions and other subjects. The use of integral transforms of the Borel type and the associated formalism is shown to be a very effective mean, constituting a solid bridge between umbral and operational methods. We merge these different points of view to obtain new and efficient analytical techniques for the derivation of integrals of special functions and the summation of associated generating functions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The RMT may be formulated as follows: if f(x) admits the expansion \(f(x) = \sum _{n=0}^{\infty } \frac{\phi (n)(-x)^{n}}{n!}\) with \(\phi (0) \ne 0\) in a neighborhood of \(x = 0\), then \(\int _{0}^{\infty } x^{\nu -1} f(x) {{\mathrm{d}}}x = \Gamma (\nu ) \phi (-\nu )\).

References

  1. Amdeberhan, T., Moll, V.H.: A formula for a quartic integral: a survey of old proofs and some new ones. Ramanujan J. 18, 91 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amdeberhan, T., Espinosa, O., Gonzalez, I., Harrison, M., Moll, V.H., Straub, A.: Ramanujan’s master theorem. Ramanujan J. 29, 103 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrews, L.C.: Special Functions For Engineers and Applied Mathematicians. Macmillan Publishing Company, New York (1985)

    Google Scholar 

  4. Appell, P., Kampé de Fériet, J.: Fonctions Hypergéometriques et Hyperspheriques. Polynômes d’Hermite, Gauthiers-Villars, Paris (1926)

  5. Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: Symbolic methods for the evaluation of sum rules of Bessel functions. J. Math. Phys. 54, 073501 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babusci, D., Dattoli, G., Górska, K., Penson, K.A.: The spherical Bessel and Struve functions and operational methods. Appl. Math. Comput. 238, 1 (2014)

    MATH  MathSciNet  Google Scholar 

  7. Babusci, D., Dattoli, G., Górska, K., Penson, K. A.: Lacunary generating functions for Laguerre Polynomials, Séminaire Lotharingien de Combinatoire (2017, in press): preprint arXiv:1302.4894 [math-ph]

  8. Bender, C.M., Orszag, S.V.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill Book Company, New York (1978)

    MATH  Google Scholar 

  9. Brychkov, Yu.A.: Handbook of Special Functions. Derivatives, Integrals, Series and Other Formulas, CRC Press, Boca Raton (2008)

  10. Dattoli, G.: Derivation of the Hile-Hardy type formulae and operational methods. Rend. Mat. Acc. Lincei s. 9(14), 85 (2003)

    MATH  Google Scholar 

  11. Dattoli, G., Germano, B., Martinelli, M.R., Ricci, P.E.: The negative derivative operator. Integr. Transf. Spec. F. 19, 259 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dattoli, G., Ottaviani, P.L., Torre, A., Vázquez, L.: Evolution operator equations: integration with algebraic and finite-difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. La Rivista del Nuovo Cimento 20(4), 1 (1997)

    Article  Google Scholar 

  13. Dattoli, G., Ricci, P. E., Marinelli, L.: Generalized truncated exponential polynomials and applications, Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 34, 9–18 (2002)

  14. Dzherbashyan, M.M.: Integral Transforms and Representations of Functions in Complex Domain (in Russian). Nauka, Moscow (1966)

    Google Scholar 

  15. Ehrenpreis, L.: The Borel Transform. In: Aoki, T., Majima, H., Takei, Y., Tose, N. (eds.) Algebraic Analysis of Differential Equations. Springer, Berlin (2008)

    Google Scholar 

  16. Gessel, I.M., Jayawant, P.: A triple lacunary generating function for Hermite polynomials. Electron. J. Comb. 12, R30 (2005)

    MATH  MathSciNet  Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  18. Mishra, H. K., Nagar, A. K.: He-Laplace Method for Linear and Nonlinear Partial Differential Equations J. Appl. Math. 2012, Article ID 180315, 16 (2012)

  19. Jumarie, G.: Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Appl. Math. Lett. 22, 1659 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krantz, S. G.: The Hankel Contour and Hankel Functions, in: Handbook of Complex Variables, Birkhäuser, Boston, Suppl. pages 157–160 (1999)

  21. Mikusiński, J.: Sur les fondements du calcul operatoire, Studia Mathematica 11 (1949) 41. Operational Calculus, Pergamon Press, London (1959)

  22. Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25, 241 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Okamoto, S.: A simplified derivation of Mikusiński’s operational calculus, Proceedings of the Japan Academy, Ser. A, Math. Sci. 55 (1), 1 (1979)

  24. Oldham, K. B., Spanier, J.: The Fractional Calculus, in: Mathematics in Science and Engineering 111, Academic Press, San Diego, Suppl. pages 46–159 (1999)

  25. Podlubny, I.: Fractional Differential Equations, in: Mathematics in Science and Engineering 198, Academic Press, San Diego (1974)

  26. Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. Special Functions, vol. 2, Gordon and Breach, Amsterdam (1998)

  27. Prudnikov, A. P., Brychkov, Yu. A., Marichev, O. I.: Integrals and Series. More Special Functions, vol. 3, Gordon and Breach, Amsterdam (1998)

  28. Roman, S.: The theory of the umbral calculus. J. Math. Anal. Appl. 87, 58 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rota, G.-C., Kahaner, D., Odlyzko, A.: On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, 684 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  30. Shawyer, B., Watson, B.: Borel’s Methods of Summability. Theory and Applications. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  31. Sneddon, I.N.: The Use of Integral Transforms. Tata McGraw-Hill Publishing Company Ltd., New Delhi (1974)

    MATH  Google Scholar 

  32. Strehl, V.: Combinatoire Retrospective et Creative, Séminaire Lotharingien de Combinatoire, Bertinoro, Italy, 71 (2013). http://www.emis.de/jacFinals/SLC/wpapers/sF1vertrag/strehl.pdf

  33. Tricomi, F.G.: Funzioni ipergeometriche confluenti. Cremonese, Rome (1954)

  34. Vallée, O., Soares, M.: Airy Functions and Application to Physics. World Scientific, London (2004)

    Book  MATH  Google Scholar 

  35. Weinberg, S.: The Quantum Theory of Fields II. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  36. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, New York (1963)

    MATH  Google Scholar 

  37. Wolf, K.B.: Integral Transforms in Science and Engineering. Plenum Press, New York (1979)

    Book  MATH  Google Scholar 

  38. Zakharov, A.A.: Borel summation method. In: Hazewinkel, M. (ed.) Encyclopedia of Mathematics. Springer, Berlin (2001)

    Google Scholar 

  39. Zhao, Ch.-G., Yang, A.-M., Jafari, H., Haghbin, A.: The Yang-Laplace Transform for Solving the IVPs with Local Fractional Derivative. Abstr. Appl. Anal. 2014, Article ID 386459, 5 (2014)

  40. Zinn-Justin, J.: Summation of divergent series: order-dependent mapping. Appl. Numer. Math. 60(12), 1454 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to Dr. D. Babusci for interesting and enlightening discussions on the topics treated in this paper. It is also a pleasure to recognize the interest and the encouragement of Prof. V. Strehl. K. G., A. H. and K. A. P. were supported by the PAN-CNRS program for the French-Polish collaboration. Moreover, K. G. thanks for the support from MNiSW, Warsaw (Poland), under “Iuventus Plus 2015–2016”, program no IP2014 013073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Górska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dattoli, G., Palma, E.d., Sabia, E. et al. Operational Versus Umbral Methods and the Borel Transform. Int. J. Appl. Comput. Math 3, 3489–3510 (2017). https://doi.org/10.1007/s40819-017-0315-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0315-7

Keywords

Navigation