Skip to main content
Log in

Unsteady MHD Free Convective Flow of a Visco-Elastic Fluid Past an Infinite Vertical Porous Moving Plate with Variable Temperature and Concentration

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present study considers the effect unsteady MHD free convective flow of a viscoelastic incompressible electrically conducting fluid past a moving vertical plate through a porous medium with time dependent oscillatory permeability and suction in presence of a uniform transverse magnetic field and heat source and chemical reaction along with heat and mass transfer are reported. A uniform magnetic field acts perpendicular to the porous surface, which absorbs the fluid with a suction velocity varying with time. The governing equations of the fluid flow, heat and mass transfer are solved by applying multi parameter perturbation technique. Comparison with previously published work have been conducted and the results are found to be in concordance with the previous study. A parametric study is performed on the influence of the visco-elastic fluid parameter, the magnetic field parameter, the permeability parameter, on the fluid velocity. The expressions for transient velocity, temperature, species concentration and non-dimensional skin friction at the plate are illustrated through tables to observe the visco-elastic effect in combination of other flow parameters involved in the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Beard, D.W., Walters, K.: Elastic-viscous boundary layer flow. Two dimensional flows near a stagnation point. Proc. Camb. Philos. Soc. 60(3), 667–674 (1964)

    Article  MATH  Google Scholar 

  2. Angirasa, D., Peterson, P., Pop, I.: Combined heat and mass transfer by natural convection with opposing buoyancy effects in a fluid saturated porous medium. Int. J. Heat Mass Trans. 40(12), 2755–2773 (1997)

    Article  MATH  Google Scholar 

  3. Chowdhury, M.K., Islam, M.N.: MHD free convection flow of visco-elastic fluid past an infinite vertical porous plate. Heat Mass Transf. 36(5), 439–447 (2000)

    Article  Google Scholar 

  4. Subhash, A.M., Joshi, A., Sonth, R.M.: Heat transfer in MHD visco-elastic fluid flow over a stretching surface. Zeitschrift frangewandte Mathematikund Mechanik 81(10), 691–698 (2001)

    Article  MATH  Google Scholar 

  5. Abel, M.S., Khan, S.K., Prasad, K.V.: Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int. J. Non-Linear Mech. 37(1), 81–88 (2002)

    Article  MATH  Google Scholar 

  6. Khan, S.K., Sanjayanand, E.: Visco-elastic boundary layer MHD flow through a porous medium over a porous quadratic stretching sheet. Arch. Mech. 56(3), 191–204 (2004)

    MATH  Google Scholar 

  7. Makinde, O.D.: Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. Int. Commun. Heat Mass Transf. 32, 1411–1419 (2005)

    Article  Google Scholar 

  8. Kandasamy, R., Periasamy, K., Raghu, K.K.S.: Chemical reaction, heat and mass transfer on MHD flow over a vertical stretching surface with heat source and thermal stratification effects. Int. J. Heat Mass Transf. 48(21–22), 4557–4561 (2005)

    Article  MATH  Google Scholar 

  9. Khan, S.K.: Heat transfer in visco-elastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation. Int. J. Heat Mass Transf. 49(3), 628–639 (2006)

    Article  MATH  Google Scholar 

  10. Muthucumaraswamy, R., Meenakshisundaram, S.: Theoretical study of chemical reaction effects on vertical oscillating plate with variable temperature. Theoret. Appl. Mech. 33(3), 245–257 (2006)

    Article  MATH  Google Scholar 

  11. Ibrahim, F.S., Elaiwm, A.M., Bakr, A.A.: Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow Past a semi-infinite vertical permeable moving plate with heat source and suction. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1056–1066 (2008)

  12. Massoudi, M., Phuoe, T.X.: Unsteady motion of a non-linear visco-elastic fluid. Int. J. Non-Linear Mech. 44(10), 1063–1072 (2009)

    Article  Google Scholar 

  13. Sochi, T.: Non-Newtonian flow in porous media. Polymer 51(22), 5007–5023 (2010)

    Article  Google Scholar 

  14. Raju, M.C., Varma, S.V.K., Ramakoteswara Rao, R.: Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate, i-manager’s. J. Future Eng. Technol. 8(3), 35–40 (2013)

    Google Scholar 

  15. Satya Narayana, P.V., Harish Babu, D.: MHD free convective heat and mass transfer past a vertical porous plate with variable temperature. Int. J. Appl. Math Mech. 9(7), 66–94 (2013)

    Google Scholar 

  16. Mishra, S.R., Dash, G.C., Acharya, M.: Mass and heat transfer effect on MHD flow of a visco-elastic fluid through porous medium with oscillatory suction and heat source. Int. J. Heat Mass Transf. 57, 433–438 (2013)

    Article  Google Scholar 

  17. Ravikumar, V., Raju, M.C., Raju, G.S.S.: Combined effects of eat absorption and MHD on convective Rivlin-Ericksen flow past a semi-infinite vertical porous plate with variable temperature and suction. Ain Shams Eng. J. 5, 867–875 (2014)

    Article  Google Scholar 

  18. Raju, M.C., Vidya sagar, B., Varma, S.V.K.: Radiation absorption effect on MHD free convective chemically reacting visco-elastic fluid past an oscillatory vertical porous plate in slip flow regime. Int. J. Eng. Comput. Sci. 3(9), 8212–8221 (2014). ISSN:2319-7242

    Google Scholar 

  19. Acharya, A.K., Dash, G.C., Mishra, S.R.: Free convective fluctuating MHD flow through porous media past a vertical porous plate with variable temperature and heat source. Phys. Res. Int. 2014, 1–8, Article ID: 587367 (2014)

  20. Venkateswarlu, Bhumarapu, Narayana, Panyam Venkata Satya: MHD visco- elastic fluid flow over a continuously moving vertical surface with chemical reaction. Walailak J. Sci. Technol. 12(9), 775–783 (2015)

    Google Scholar 

  21. Makanda, G., Shaw, S., Sibanda, P.: Effects of radiation on MHD free convection of a Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium with viscous dissipation. Bound. Value Probl. 75, 1–14 (2015)

  22. Baag, S., Acharya, M.R., Dash, G.C., Mishra, S.R.: MHD flow of a visco-elastic fluid through a porous medium between infinite parallel plates with time dependent suction. J. Hydrodyn. 27(5), 738–747 (2015)

    Article  Google Scholar 

  23. Umamaheswar, M., Raju, M.C., Varma, S.V.K.: Effects of time dependent variable Temperature and concentration boundary layer on MHD free convection flow past a vertical porous plate in the presence of thermal radiation and chemical reaction. Int. J. Appl. Comput. Math. (2015). doi:10.1007/s40819-015-0124-9

  24. Seth, G.S., Hussain, S.M., Sarkar, S.: Hydro-magnetic natural convection flow with heat and mass transfer of a chemically reacting and heat absorbing fluid past an accelerated moving vertical plate with ramped temperature and ramped surface concentration through a porous medium. J. Egypt. Math. Soc. 23, 197–207 (2015)

    Article  MATH  Google Scholar 

  25. Seth, G.S., Sharma, S., Sarkar, S.: Natural convection heat and mass transfer flow with Hall current. Rotation, radiation and heat absorption past an accelerated moving vertical plate with ramped temperature. J. Appl. Fluid Mech. 8(1), 7–20 (2015)

    Google Scholar 

  26. Seth, G.S., Sarkar, S.: MHD natural convection heat and mass transfer flow past a time dependent moving vertical plate with ramped temperature in a rotating medium with Hall effects, radiation and chemical reaction. J. Mech. 31(1), 91–104 (2015)

    Article  Google Scholar 

  27. Seth, G.S., Kumbhakar, B., Sharma, R.: Unsteady MHD free convection flow with Hall effect of a radiating and heat absorbing fluid past a moving vertical plate with variable ramped temperature. J. Egypt. Math. Soc. 24, 471–478 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  28. Seth, G.S., Sharma, R., Kumbhakar, B.: Heat and mass transfer effects on unsteady MHD natural convection flow of a chemically reactive and radiating fluid through a Porous medium past a moving vertical plate with arbitrary ramped temperature. J. Appl. Fluid Mech. 9(1), 103–117 (2016)

    Article  Google Scholar 

  29. Gurivireddy, P., Raju, M.C., Mamatha, B., Varma, S.V.K.: Thermal diffusion effect on MHD heat and mass transfer flow past a semi-infinite moving vertical porous plate with heat generation and chemical reaction. Appl. Math. (Scientific Research Publishing) 7, 638–649 (2016)

    Google Scholar 

  30. Phan-Thein, N.: Understanding Viscoelasticity. An Introduction to Rheology, 2nd edn. Springer, Berlin (2013)

    Book  Google Scholar 

  31. Raju, M.C., Chamkha, A.J., Philip, J., Varma, S.V.K.: Soret effect due to mixed convection on unsteady magneto hydrodynamic flow past a semi infinite vertical permeable moving plate in presence of thermal radiation, heat absorption and homogenous chemical reaction. Int. J. Appl. Comput. Math. (2016). doi:10.1007/s40819-016-0147-x

Download references

Acknowledgements

Authors are grateful to the reviewers for their valuable comments and suggestions which helped them to improve the quality of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramesh Babu.

Appendix

Appendix

$$\begin{aligned} \hbox {m}_1= & {} \frac{1}{2}\left( {\hbox {S}_{\mathrm{c}} +\sqrt{\hbox {S}_{\mathrm{c}}^{2}+4\hbox {S}_{\mathrm{c}} {\upgamma }}}\right) ,\quad \hbox {m}_2 =\frac{1}{2}\left( {\hbox {S}_{\mathrm{c}} +\sqrt{\hbox {S}_{\mathrm{c}}^{2}+4\hbox {S}_{\mathrm{c}} \left( {{\upgamma }+\hbox {n}}\right) }} \right) , \\ \hbox {m}_3= & {} \frac{1}{2}\left( {\hbox {P}_{\mathrm{r}} +\sqrt{\hbox {P}_{\mathrm{r}}^{2}+4\hbox {P}_{\mathrm{r}} {\upphi }}}\right) , \quad \hbox {m}_4 =\frac{1}{2}\left( {\hbox {P}_{\mathrm{r}} +\sqrt{\hbox {P}_{\mathrm{r}}^{2}+4\hbox {P}_{\mathrm{r}} \left( {{\upphi } +\hbox {n}} \right) }} \right) \\ \hbox {m}_{5}= & {} \frac{1}{2}\left( {1+\sqrt{1+4\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }} \right) , \quad \hbox {m}_6 =\frac{1}{2}\left( {1+\sqrt{1+4\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }} \right) \\ \hbox {m}_7= & {} \frac{1}{2}\left( {1+\sqrt{1+4\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }} \right) ,\quad \hbox {m}_8=\frac{1}{2}\left( {1+\sqrt{1+4\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }} \right) \\ \hbox {A}_1= & {} \frac{\hbox {AS}_{\mathrm{c}} \hbox {m}_1 }{\hbox {m}_1^2 -\hbox {S}_{\mathrm{c}} \hbox {m}_1 -\hbox {S}_{\mathrm{c}} \left( {{\upgamma } +\hbox {n}}\right) },\quad \hbox {A}_2=1-\hbox {A}_1 , \quad \hbox {A}_3 =\frac{-\hbox {Q}_1 \hbox {P}_{\mathrm{r}} }{\hbox {m}_1^2 -\hbox {P}_{\mathrm{r}} \hbox {m}_1-\hbox {P}_{\mathrm{r}} {\upphi } }, \hbox {A}_4 =1-\hbox {A}_3 , \\ \hbox {A}_5= & {} \frac{\hbox {A}\hbox {P}_{\mathrm{r}} \hbox {A}_4 \hbox {m}_3 }{\hbox {m}_3^2 -\hbox {P}_{\mathrm{r}} \hbox {m}_3 -\hbox {P}_{\mathrm{r}} \left( {{\upphi } +\hbox {n}} \right) }, \quad \hbox {A}_6 =\frac{\hbox {A}\hbox {P}_{\mathrm{r}} \hbox {A}_3 \hbox {m}_1 }{\hbox {m}_1^2 -\hbox {P}_{\mathrm{r}} \hbox {m}_1 -\hbox {P}_{\mathrm{r}} \left( {{\upphi }+\hbox {n}} \right) }, \quad \hbox {A}_7 =\frac{-\hbox {Q}_1 \hbox {P}_{\mathrm{r}} \hbox {A}_2 }{\hbox {m}_2^2 -\hbox {P}_{\mathrm{r}} \hbox {m}_2 -\hbox {P}_{\mathrm{r}} \left( {{\upphi } +\hbox {n}} \right) }\\ \hbox {A}_8= & {} \frac{-\hbox {Q}_1\hbox {P}_{\mathrm{r}} \hbox {A}_1 }{\hbox {m}_1^2 -\hbox {P}_{\mathrm{r}} \hbox {m}_1-\hbox {P}_{\mathrm{r}} \left( {{\upphi } +\hbox {n}} \right) }, \quad \hbox {A}_9 =\hbox {A}_6 +\hbox {A}_8 , \hbox {A}_{10} =\hbox {A}_5 +\hbox {A}_7 +\hbox {A}_9 \quad \hbox {A}_{11} =1-\hbox {A}_{10} , \\ \hbox {A}_{12}= & {} \frac{-\hbox {G}_{\mathrm{r}} \hbox {A}_4 }{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }, \quad \hbox {A}_{13} =\frac{-\hbox {G}_{\mathrm{r}}\hbox {A}_3}{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }, \quad \hbox {A}_{14} =\frac{-\hbox {G}_{\mathrm{m}} }{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}}\right) }, \\ \hbox {A}_{15}= & {} \hbox {A}_{13} +\hbox {A}_{14}, \hbox {A}_{16} =\hbox {u}_{\mathrm{p}} -\left( {\hbox {A}_{12}+\hbox {A}_{15} } \right) , \quad \hbox {A}_{17} =\frac{\hbox {A}_{16} \left( {\hbox {m}_5 } \right) ^{3}}{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }, \\ \hbox {A}_{18}= & {} \frac{\hbox {A}_{12} \left( {\hbox {m}_3}\right) ^{3}}{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}} \right) }, \quad \hbox {A}_{19} =\frac{\hbox {A}_{15}\left( {\hbox {m}_1}\right) ^{3}}{\hbox {m}_1^2 -\hbox {m}_1-\left( {\hbox {M}+\frac{1}{\hbox {K}}}\right) } \hbox {A}_{20} =-\left( {\hbox {A}_{17} +\hbox {A}_{18} +\hbox {A}_{19}}\right) ,\\ \hbox {A}_{21}= & {} \frac{-\hbox {Gr}\hbox {A}_{11} }{\hbox {m}_4^2 -\hbox {m}_4-\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}}\right) },\quad \hbox {A}_{22}=\frac{- \hbox {Gr }\hbox {A}_5 }{\hbox {m}_{3}^{2}-\hbox {m}_3-\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}}\right) }, \\ \hbox {A}_{23}= & {} \frac{-\hbox {Gr } \hbox {A}_7}{\hbox {m}_2^2 -\hbox {m}_2-\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\quad \hbox {A}_{24} =\frac{-\hbox {Gr } \hbox {A}_9 }{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \end{aligned}$$
$$\begin{aligned} \hbox {A}_{25}= & {} \frac{-\hbox {Gm }\hbox {A}_2 }{\hbox {m}_2^2 -\hbox {m}_2 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{26} =\frac{-\hbox {Gm } \hbox {A}_1 }{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }\\ \hbox {A}_{27}= & {} \frac{\hbox {A}\hbox {A}_{16} \hbox {m}_5 }{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{28} =\frac{\hbox {A}\hbox {A}_{12} \hbox {m}_3 }{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\\ \hbox {A}_{29}= & {} \frac{\hbox {A}\hbox {A}_{15} \hbox {m}_1 }{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{30} =\hbox {A}_{22} +\hbox {A}_{28} \quad \hbox {A}_{31} =\hbox {A}_{23} +\hbox {A}_{25} \\ \hbox {A}_{32}= & {} \hbox {A}_{24} +\hbox {A}_{26} +\hbox {A}_{29} \quad \hbox {A}_{33} =-\left( {\hbox {A}_{27} +\hbox {A}_{21} +\hbox {A}_{30} +\hbox {A}_{31} +\hbox {A}_{32} } \right) , \\ \hbox {A}_{34}= & {} \frac{\hbox {A}\hbox {A}_{16} \left( {\hbox {m}_5}\right) ^{3}}{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{35} =\frac{\hbox {A}\hbox {A}_{12} \left( {\hbox {m}_3 } \right) ^{3}}{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\\ \hbox {A}_{36}= & {} \frac{\hbox {A}\hbox {A}_{15} \left( {\hbox {m}_1 } \right) ^{3}}{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{37} =\frac{\hbox {A}\hbox {A}_{20} \hbox {m}_6 }{\hbox {m}_6^2 -\hbox {m}_6 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{38}= & {} \frac{\hbox {A}\hbox {A}_{17} \hbox {m}_5 }{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) } ,\quad \hbox {A}_{39} =\frac{\hbox {A}\hbox {A}_{18} \hbox {m}_3 }{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{40}= & {} \frac{\hbox {A}\hbox {A}_{19} \hbox {m}_1 }{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{41}=\frac{\hbox {A}_{33} \left( {\hbox {m}_7 } \right) ^{3}}{\hbox {m}_7^2 -\hbox {m}_7 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{42}= & {} \frac{\hbox {A}_{27} \left( {\hbox {m}_5 } \right) ^{3}}{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\quad \hbox {A}_{43}=\frac{\hbox {A}_{21} \left( {\hbox {m}_4 } \right) ^{3}}{\hbox {m}_4^2 -\hbox {m}_4 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{44}= & {} \frac{\hbox {A}_{30} \left( {\hbox {m}_3 } \right) ^{3}}{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{45} =\frac{\hbox {A}_{31} \left( {\hbox {m}_2 } \right) ^{3}}{\hbox {m}_2^2 -\hbox {m}_2 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{46}= & {} \frac{\hbox {A}_{32} \left( {\hbox {m}_1}\right) ^{3}}{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{47} =\frac{\hbox {n}\hbox {A}_{33}\left( {\hbox {m}_7} \right) ^{2}}{\hbox {m}_7^2 -\hbox {m}_7 \left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\\ \hbox {A}_{48}= & {} \frac{\hbox {n}\hbox {A}_{27} \left( {\hbox {m}_5 } \right) ^{2}}{\hbox {m}_5^2 -\hbox {m}_5 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{49} =\frac{\hbox {n}\hbox {A}_{21} \left( {\hbox {m}_4 } \right) ^{2}}{\hbox {m}_4^2 -\hbox {m}_4 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) },\\ \hbox {A}_{50}= & {} \frac{\hbox {n}\hbox {A}_{30} \left( {\hbox {m}_3 } \right) ^{2}}{\hbox {m}_3^2 -\hbox {m}_3 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{51} =\frac{\hbox {n}\hbox {A}_{31} \left( {\hbox {m}_2} \right) ^{2}}{\hbox {m}_2^2 -\hbox {m}_{2}-\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \\ \hbox {A}_{52}= & {} \frac{\hbox {n}\hbox {A}_{32} \left( {\hbox {m}_1 } \right) ^{2}}{\hbox {m}_1^2 -\hbox {m}_1 -\left( {\hbox {M}+\frac{1}{\hbox {K}}+\hbox {n}} \right) }, \quad \hbox {A}_{53} =\hbox {A}_{41} +\hbox {A}_{47} , \\ \hbox {A}_{54}= & {} \hbox {A}_{34} +\hbox {A}_{38} +\hbox {A}_{42} +\hbox {A}_{48} , \hbox {A}_{55} =\hbox {A}_{43} +\hbox {A}_{49} , \quad \hbox {A}_{56} =\hbox {A}_{35} +\hbox {A}_{39} +\hbox {A}_{44} +\hbox {A}_{50}, \\ \hbox {A}_{57}= & {} \hbox {A}_{45} +\hbox {A}_{51} , \quad \hbox {A}_{58} =\hbox {A}_{36} +\hbox {A}_{40} +\hbox {A}_{46} +\hbox {A}_{52},\\ \hbox {A}_{59}= & {} -\left( {\hbox {A}_{53} +\hbox {A}_{37} +\hbox {A}_{54}+\hbox {A}_{55} +\hbox {A}_{56} +\hbox {A}_{57} +\hbox {A}_{58}}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, K.R., Parandhama, A., Raju, K.V. et al. Unsteady MHD Free Convective Flow of a Visco-Elastic Fluid Past an Infinite Vertical Porous Moving Plate with Variable Temperature and Concentration. Int. J. Appl. Comput. Math 3, 3411–3431 (2017). https://doi.org/10.1007/s40819-017-0306-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0306-8

Keywords

Navigation