Skip to main content
Log in

An Operational Matrix Method for Solving a Class of Nonlinear Volterra Integro-Differential Equations by Operational Matrix Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the improved Chebyshev operational matrix method is proposed to solve a class of nonlinear Volterra integro-differential equation. The main characteristic behind this approach is that it reduces such problems to ones of solving systems of algebraic equations. Some examples are included to demonstrate the validity and applicability of the this techinque. The only a small number of shifted Chebyshev polynomials is needed to obtain a satisfactory result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations, 2nd edn. Chapman & Hall/CRC, Boca Raton (2008)

    Book  MATH  Google Scholar 

  2. Wazwaz, A.M.: A First Course in Integral Equations. World Scientifics, Singapore (1997)

    Book  MATH  Google Scholar 

  3. Pandey, R.K., Kumar, N.: Solution of Lane-Emden type equations using Berstein operational matrix of differentiation. New Astron. 17, 303–308 (2012)

    Article  Google Scholar 

  4. Saadatmandi, A., Dehghan, M.: A new aperational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving higher-order ordinary differential equations. Int. J. Comput. Math. 81, 73–80 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Razzaghi, M., Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32(4), 495–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babolian, E., Fattahzadeh, F.: Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl. Math. Comput. 188, 417–425 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Pandey, R.K., Kumar, N., Bhardwaj, A., Dutta, G.: Solution of Lane-Emden type equations using Legendre operational matrix of differentiation. Appl. Math. Comput. 218, 7629–7637 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Öztürk, Y., Gülsu, M.: An operational matrix method for solving Lane-Emden equations arising in astrophysics. Math. Meth. Appl. Sci. 37, 2227–2235 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ray, S.S.: On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional Bagley Torvik equation. Appl. Math. Comput. 218, 5239–5248 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Ebadi, G., Rahimi-Ardabili, M.Y., Shahmorad, S.: Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method. Appl. Math. Comput. 188, 1580–1586 (2007)

    MATH  MathSciNet  Google Scholar 

  12. Mohsen, A., El-Gamel, M.: On the numerical solution of linear and nonlinear volterra integral and integro-differential equations. Appl. Math. Comput. 217, 3330–3337 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Darania, P., Ivaz, K.: Numerical solution of nonlinear Volterra-Fredholm integro differential equations. Comput. Appl. Math. 56, 2197–2209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comput. 219, 482–497 (2012)

    MATH  MathSciNet  Google Scholar 

  15. Maleknejad, K., Hashemizadeh, E., Basirat, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm- Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 17, 52–61 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Daşçıoğlu, A., Yaslan, H.Ç.: An approximation method for the solution of nonlinear integral equations. Appl. Math. Comput. 174, 619–629 (2006)

    MATH  MathSciNet  Google Scholar 

  17. Babolian, E., Masouri, Z., Hatamzadeh-Varmazyar, S.: New direct methodto solve nonlinear Volterra-Fredholm integral and integro-differential equations using operational matrix block-pulse functions. Prog. Electromagn. Res. 8, 59–76 (2008)

    Article  MATH  Google Scholar 

  18. Araghi, M.A.F., Behzadi, S.S.: Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using Homotopy Analysis Method. J. Appl. Math. Comput. 37(1), 1–12 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Ghomanjani, F., Farahi, M.H., Pariz, N.: A new approach for numerical solution of a linear system with distributed delays, Volterra delay-integro-differential equations, and nonlinear Volterra-Fredholm integral equation by Bezier curves. Comput. Appl. Math. (2015). doi:10.1007/s40314-015-0296-2

  20. Al-Khaled, K., Allan, F.: Decomposition method for solving nonlinear integro-differential equations. J. Appl. Math. Comput. 19, 415–425 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maleknejad, K., Sohrabi, S., Derili, H.: A new computational method for solution of nonlinear Volterra-Fredholm integro-differential equations. Int. J. Comput. Math. 87(2), 327–338 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maleknejad, K., Basirat, B., Hashemizadeh, E.: Hybrid Legendre polynomials and Block-Pulse functions approach for nonlinear Volterra-Fredholm integro-differential equations. Comput. Math. Appl. 61, 2821–2828 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Darania, P., Ivaz, K.: Numerical solution of nonlinear Volterra-Fredholm integro-differential equations. Comput. Math. Appl. 56(9), 2197–2209 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Merzban, H.R., Hoseini, S.M.: Solution of nonlinear Volterra-Fredholm integro differential equations via hybrid of Block-Pulse functions and Lagrange interpolating polynomials. Adv. Numer. Anal. 2012, Article ID 868279 (2012). doi:10.1155/2012/868279

  25. Babolian, E., Masouri, Z., Varmazyar, S.H.: Numerical solution of nonlinear Volterra Fredholm integro-differential equations via direct method using triangular functions. Comput. Math. Appl. 58, 239–247 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ghasemi, M., Kajani, M.T., Babolian, E.: Numerical solutions of the nonlinear integro-differential equations: Wavelet-Galerkin method and homotopy perturbation method. Appl. Math. Comput. 188, 450–455 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, New York (2003)

    MATH  Google Scholar 

  28. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London (1968)

    MATH  Google Scholar 

  29. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, Inc., New York (1969)

  30. Davis, P.J.: Interpolation and Approximation. Dover Publications, New York (1963)

    MATH  Google Scholar 

  31. Body, J.P.: Chebyshev and Fourier Spectral Methods. University of Michigan, New York (2000)

    Google Scholar 

  32. Nemati, S.: Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method. J. Comput. Appl. Math. 278, 29–36 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  33. Small, R.D.: Population Growth in a Closed model, Mathematical Modelling: Classroom Notes in Applied Mathematics. SIAM, Philadelphia, PA (1989)

    Google Scholar 

  34. Scudo, F.M.: Volterra and theoretical ecology. Theor. Popul. Biol. 2, 1–23 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  35. TeBeest, K.G.: Numerical and analytical solutions of Volterra’s population model. SIAM Rev. 39(3), 484–493 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving Volterra’s population model. Appl. Math. Comput. 149, 893–900 (2004)

    MATH  MathSciNet  Google Scholar 

  37. Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving higher-order ordinary differential equations. Int. J. Comput. Math. 81, 73–80 (2004)

    MATH  MathSciNet  Google Scholar 

  38. Wazwaz, A.M.: Analytical approximations and Pade’ approximants for Volterra’s population model. Appl. Math. Comput. 100, 13–25 (1999)

    MATH  MathSciNet  Google Scholar 

  39. TeBeest, K.G.: Numerical and analytical solutions of Volterras population model. SIAM Rev. 39, 484–493 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalçın Öztürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, Y., Gülsu, M. An Operational Matrix Method for Solving a Class of Nonlinear Volterra Integro-Differential Equations by Operational Matrix Method. Int. J. Appl. Comput. Math 3, 3279–3294 (2017). https://doi.org/10.1007/s40819-016-0300-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0300-6

Keywords

Mathematics Subject Classification

Navigation