Skip to main content
Log in

Micropolar Nanofluid Flow Over an Stretching Sheet with Chemical Reaction

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Micropolar nanofluid belongings on stable stagnation point flow with heat and mass transmission constrained by a vertical elongating sheet are swatted. The conveyance model comprehends the effects of the Brownian motion and thermophoresis in the manifestation of first-order chemical reaction. Consuming similarity alteration, the governing equations are renovated into a collection of nonlinear ordinary differential equations coupled with fitting preliminary conditions which are explained numerically by Runge–Kutta–Fehlberg integration pattern with shooting procedure. The physical traits of the problem are conferred through graphs and tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  2. Peddison, J., McNitt, R.P.: Boundary layer theory for micropolar fluid. Recent Adv. Eng. Sci. 5, 405–426 (1970)

    Google Scholar 

  3. Eringen, A.C.: Theory of thermo micropolar fluids. J. Math. Anal. Appl. 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  4. El-Amin, M.F.: Magnetohydrodynamic free convection and mass transfer flow of micropolar fluid with constant suction. J. Magn. Mater. 234, 567–574 (2001)

    Article  Google Scholar 

  5. Abo-Eldahab, E.M., Aziz, M.A.E.I.: Flow and heat transfer in a micropolar fluid past a stretching surface embedded in a non-Darcian porous medium with uniform free stream. Appl. Math. Comput. 162, 881–899 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Rahman, M.M., Satter, M.A.: Magnetohydrodynamic convective flow of a micropolar fluid past a continuously moving vertical porous plate in the presence of heat generation/absorption. ASME J. Heat Transf. 128, 142–152 (2006)

    Article  Google Scholar 

  7. Hayat, T., Javed, T., Abbas, Z.: MHD stagnation point flow of an incompressible micropolar fluid over a non-linear stretching surface. Nonlinear Anal. Real. 10, 1514–15265 (2009)

    Article  MATH  Google Scholar 

  8. Das, K.: Effects of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference. Int. J. Heat Mass Transf. 54, 3505–3513 (2011)

    Article  MATH  Google Scholar 

  9. Hussian, M., Ashraf, M., Nadeem, S., Khan, M.: Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet. J. Franklin Inst. 350, 194–210 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Turkyilmazoglu, M.: A note on micropolar fluid flow and heat transfer over a porous shrinking sheet. Int. J. Heat Mass Transf. 72, 388–391 (2014)

    Article  Google Scholar 

  11. Khan, M., Malik, R.: Forced convective heat transfer to Sisko fluid flow past a stretching cylinder. AIP Adv. 5, 127202 (2015)

    Article  Google Scholar 

  12. Khan, M., Malik, R., Hussain, M.: Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder. AIP Adv. 6, 055315 (2016)

    Article  Google Scholar 

  13. Malik, R., Khan, M., Mushtaq, M.: Cattaneo-Christov heat flux model for Sisko fluid flow past a permeable non-linearly stretching cylinder. J. Mol. Liq. 222, 430–434 (2016)

    Article  Google Scholar 

  14. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Non-New Flows, vol. FED 231, pp. 99–105. ASME, New York (1995)

    Google Scholar 

  15. Buongiorno, J.: convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  16. Dutta, B.K., Roy, P., Gupta, A.S.: Temperature field in flow over a stretching sheet with uniform heat flux. Int. Commun. Heat Mass Transf. 12, 89–94 (1985)

    Article  Google Scholar 

  17. Chen, C.K., Char, M.I.: Heat transfer of a continuous stretching surface with suction or blowing. J. Math. Anal. Appl. 135, 568–580 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  20. Hassan, M., Tabar, M.M., Nemati, H., Domairry, G., Noori, F.: An analytical solution for boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Therm. Sci. 50, 2256–2263 (2011)

    Article  Google Scholar 

  21. Yao, S., Fang, T., Zhong, Y.: Heat transfer of a generalized stretching /shrinking wall problem with convective boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 752–760 (2011)

    Article  MATH  Google Scholar 

  22. Makinde, O.D., Aziz, A.: Boundary-layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)

    Article  Google Scholar 

  23. Nazar, R., Jaradat, M., Arifin, N.M., Pop, I.: Stagnation point flow past a shrinking sheet in a nanofluid. Cent. Eur. J. Phys. 9(5), 1195–1202 (2011)

    Google Scholar 

  24. Kuznetsov, A.V., Nield, D.A.: Natural convection boundary-layer of a nanofluid past a vertical plate. Int. J. Them. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  25. Chamkha, A.J., Gorla, R.S.R., Ghodeswar, K.: Non-similar solution for natural convective boundary layer flow over a sphere embedded in a porous medium saturated with a nanofluid. Transp. Porous Media 86, 13–22 (2011)

    Article  MathSciNet  Google Scholar 

  26. Hamad, M.A.A., Pop, I., Ismail, A.I.M.: Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal. Real World Appl. 12, 1338–1346 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khan, M., Malik, R.: Forced convective heat transfer to Sisko nanofluid past a stretching cylinder in the presence of variable thermal conductivity. J. Mol. Liq. 218, 1–7 (2016)

    Article  Google Scholar 

  28. Patil, P.M., Kulkarni, P.S.: Effects of chemical reaction on free convective flow of a polar fluid through a porous medium in the presence of internal heat generation. Int. J. Therm. Sci. 47, 1043–1054 (2008)

    Article  Google Scholar 

  29. Kandasamy, R., Muhaimin, I., Saim, H.B.: Lie group analysis for the effects of temperature-dependent fluid viscosity and chemical reaction on MHD free convective heat and mass transfer with variable stream conditions. Nucl. Eng. Des. 240, 39–46 (2010)

    Article  MATH  Google Scholar 

  30. Kandasamy, R., Muhaimin, I., Saim, H.B.: Lie group analysis for the effects of temperature-dependent fluid viscosity with thermophoresis and chemical reaction on MHD free convective heat and mass transfer over a porous stretching surface in the presence of heat source/sink. Commun. Nonlinear Sci. Numer. Simul. 15, 2109–2132 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Abdul-Kahar, R., Kandasamy, R., Muhaimin, R.: Scaling group transformation for boundary-layer flow of a nanofluid past a porous vertical stretching surface in the presence of chemical reaction with heat radiation. Comput. Fluids 52, 15–21 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Das, K.: Lie group analysis for nanofluid flow past a convectively heated stretching sheet. Appl. Math. Comput. 221, 547–557 (2013)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express their very sincere thanks to the reviewers for their valuable suggestions and comments to improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidas Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Duari, P.R. Micropolar Nanofluid Flow Over an Stretching Sheet with Chemical Reaction. Int. J. Appl. Comput. Math 3, 3229–3239 (2017). https://doi.org/10.1007/s40819-016-0294-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0294-0

Keywords

Mathematical Subject Classification

Navigation