Skip to main content
Log in

MHD Flow and Heat Transfer Over a Slender Elastic Permeable Sheet in a Rotating Fluid with Hall Current

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic flow and heat transfer over a stretching sheet with a variable thickness in a rotating fluid with Hall current is investigated. Both analytical and numerical methods are employed to solve the governing coupled nonlinear differential equations. The analytical solutions are obtained through the optimal homotopy analysis method where the numerical solutions are computed by a second-order finite difference scheme. The solutions for the non-dimensional velocity and temperature fields are obtained and presented graphically for various physical parameters. The accuracy of the analytical solution is verified by plotting the residual errors and by comparing solutions with available results in the literature for some special cases. The Hall current gives rise to a cross flow. The rotating fluid frame and the wall transpiration (suction/injection) can have strong effects on the shear stress and the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(B_0 \) :

Uniform magnetic field

\(C_p \) :

Specific heat at constant pressure

\(C_{f_x } ,C_{f_z } \) :

Skin friction coefficient in the x- and z-directions

e :

Electric charge

fh :

Dimensionless velocities or real functions

J :

Current density vector

K :

Thermal conductivity

\(K_\infty \) :

Thermal conductivity of the fluid far away from the sheet

l :

Characteristic length

m :

Hall effect parameter

Mn :

Magnetic parameter

n :

Velocity power index parameter

\(n_{e}\) :

Electron number density

\(Nu_x \) :

Nusselt number

\(\Pr \) :

Prandtl number

\(p_{e}\) :

Electronic pressure

\(\hbox {Re}_\mathrm{x}\) :

Local Reynolds number

r :

Wall temperature parameter

\(\Delta T\) :

Sheet temperature

T :

Temperature

\(T_w \) :

Temperature of the plate

\(T_\infty \) :

Ambient temperature or temperature away from the wall

uvw :

Velocity components in the x-, y- and z-directions

\(U_w ( x )\) :

Stretching velocity

\(U_0 \) :

Reference velocity

V :

Velocity vector

xyz :

Cartesian coordinates

\(\eta ,\xi \) :

Similarity variables

\(\alpha \) :

Wall thickness parameter

\(\Omega \) :

Angular velocity

\(\beta \) :

Fluid rotation parameter \(\beta =4\Omega /\left[ {\left( {n+1} \right) \rho U_0 } \right] \)

\(\theta \) :

Dimensionless temperature \(\theta =\left( {T-T_\infty } \right) /\left( {T_w -T_\infty } \right) \)

\(\nu \) :

Kinematic viscosity away from the sheet

\(\rho \) :

Constant fluid density

\(\sigma \) :

Electric conductivity

\(\mu \) :

Dynamic viscosity

\(\psi \) :

Stream function

\(\phi \) :

Kummers’ function

\(\infty \) :

Condition at infinity

w :

Condition at the wall

References

  1. Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645–655 (2006)

    Article  Google Scholar 

  2. Wang, C.Y.: Exact solutions of the steady-state Navier–Stokes equations. Ann. Rev. Fluid Mech. 23, 159–177 (1991)

    Article  MathSciNet  Google Scholar 

  3. Miklavcic, M., Wang, C.Y.: Viscous flow due to a shrinking sheet. Quart. Appl. Math. 64, 283–290 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fang, T., Zhang, J.: Closed-form exact solutions of MHD viscous flow over a shrinking sheet. CNSNS 14, 2853–2857 (2009)

    MATH  Google Scholar 

  5. Dehghan, M., Shakourifar, M., Hamidi, A.: The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique. Chaos Solitons Fractals 39, 2509–2521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Shakeri, F.: The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 78, 065004 (2008)

    Article  MATH  Google Scholar 

  7. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)

    MATH  Google Scholar 

  8. Karmishin, A.V., Zhukov, A.I., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-Walled Structures. Mashinostroyenie, Moscow (1990)

    Google Scholar 

  9. Khater, A.H., Temsah, R.S., Hassan, M.M.: A Chebyshev spectral collocation method for solving Burgers-type equations. J. Comput. Appl. Math. 222, 333–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyd, J.P.: Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. Phys. 11, 299–303 (1997)

    Article  Google Scholar 

  11. Hayat, T., Hussain, Q., Javed, T.: The modified decomposition method and Padé approximants for the MHD Flow over a non-linear stretching sheet. Nonlinear Anal. Real World Appl. 10, 966–973 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, J.H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Non-Linear Mech. 35, 115–123 (2000)

    Article  Google Scholar 

  13. Khan, Y.: An effective modification of the Laplace decomposition method for nonlinear equations. Int. J. Nonlinear Sci. Numer. Simul. 10, 1373–1376 (2009)

    Google Scholar 

  14. Tan, Y., Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation. CNSNS 13, 539–546 (2008)

    MATH  Google Scholar 

  15. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press, London (2003)

    Book  Google Scholar 

  16. Liao, S.J.: Notes on the homotopy analysis method: Some definitions and theorems. CNSNS 14, 983–997 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II): an application in fluid mechanics. Int. J. Non-Linear Mech. 32, 815–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. CNSNS 15, 2003–2016 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Fan, T., You, X.: Optimal homotopy analysis method for nonlinear differential equations in the boundary layer. Numer. Algorithms 62, 337–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayat, T., Qayyum, S., Imtiaz, M., Alsaedi, A.: Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat Mass Transf. 102, 723–732 (2016)

    Article  Google Scholar 

  21. Hayat, T., Shafiq, A., Imtiaz, M., Alsaedi, A.: Impact of melting phenomenon in the Falkner–Skan wedge flow of second grade nanofluid: A revised model. J. Mol. Liq. 215, 664–670 (2016)

    Article  Google Scholar 

  22. Hayat, T., Qayyum, S., Alsaedi, A., Shafiq, A.: Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int. J. Heat Mass Transf. 103, 99–107 (2016)

    Article  Google Scholar 

  23. Hayat, T., Imtiaz, M., Alsaedi, A., Alzahrani, F.: Effects of homogeneous–heterogeneous reactions in flow of magnetite–\(\text{ Fe }_3\text{ O }_4\) nanoparticles by a rotating disk. J. Mol. Liq. 216, 845–855 (2016)

    Article  Google Scholar 

  24. Shehzad, S.A., Abdullah, Z., Abbasi, F.M., Hayat, T., Alsaedi, A.: Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface. J. Magn. Magn. Mater. 399, 97–108 (2016)

    Article  Google Scholar 

  25. Farooq, M., Ijaz Khan, M., Waqas, M., Hayat, T., Alsaedi, A., Imran Khan, M.: MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J. Mol. Liq. 221, 1097–1103 (2016)

    Article  Google Scholar 

  26. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral-homotopy analysis method for solving a nonlinear second order BVP. CNSNS 15, 2293–2302 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Meade, D.B., Haran, B.S., White, R.E.: The shooting technique for the solution of two-point boundary value problems. Maple Tech. News. 3, 85–93 (1996)

    Google Scholar 

  28. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, New York (1984)

    Book  MATH  Google Scholar 

  29. Keller, H.B.: Numerical Methods for Two-point Boundary Value Problems. Dover, New York (1992)

    Google Scholar 

  30. Vajravelu, K., Prasad, K.V.: Keller-Box Method and Its Application. HEP and Walter De Gruyter GmbH, Berlin/Boston (2014)

    Book  MATH  Google Scholar 

  31. Abbasi, F.M., Hayat, T., Alsaedi, A.: Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system. Phys. E Low-Dimens. Syst. Nanostruct. 68, 123–132 (2015)

    Article  Google Scholar 

  32. Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of \(\text{ Al }_{2}\text{ O }_{3}\)-water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  33. Hayat, T., Farooq, S., Alsaedi, A., Ahmad, B.: Influence of variable viscosity and radial magnetic field on peristalsis of copper-water nanomaterial in a non-uniform porous medium. Int. J. Heat Mass Transf. 103, 1133–1143 (2016)

    Article  Google Scholar 

  34. Wang, C.Y.: Stretching surface in a rotating fluid. ZAMP 39, 177–185 (1988)

    Article  MATH  Google Scholar 

  35. Abbas, Z., Javed, T., Sajid, M., Ali, N.: Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid. J Taiwan Inst. Chem. Eng. 41, 644–650 (2010)

    Article  Google Scholar 

  36. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transf. 107, 248–250 (1985)

    Article  Google Scholar 

  37. Ali, M.E.: Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 29, 227–234 (1994)

    Google Scholar 

  38. Chen, C.H.: Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf. 33, 471–476 (1998)

    Article  Google Scholar 

  39. Chaudhary, R.C., Kumar Jha, A.: Heat and mass transfer in elastico-viscous fluid past an impulsively started infinite vertical plate with Hall effect. Latin Am. Appl. Res. 38, 17–26 (2008)

    Google Scholar 

  40. Fang, T., Zhang, J., Zhong, Y.: Boundary layer flow over a stretching sheet with variable thickness. Appl. Math. Comput. 218, 7241–7252 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Khader, M.M., Megahed, A.M.: Boundary layer flow due to a stretching sheet with a variable thickness and slip velocity. J. Appl. Mech. Tech. Phys. 56, 241–247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hayat, T., Ijaz Khan, M., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  43. Hayat, T., Ijaz Khan, M., Farooq, M., Yasmeen, T., Alsaedi, A.: Stagnation point flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. J. Mol. Liq. 220, 49–55 (2016)

    Article  Google Scholar 

  44. Andersson, H.I., Bech, K.H., Dandapt, B.S.: Magnetohydrodynamic flow of a power law fluid over a stretching sheet. Int. J. Non-Linear Mech. 72, 929–936 (1992)

    Article  MATH  Google Scholar 

  45. Kothandaraman, C.P., Subramanyan, S.: Heat and Mass Transfer Data Book. New Age International, New Delhi (2014)

    Google Scholar 

Download references

Acknowledgements

This paper was finalized when K.V.P. was visiting the University of Hong Kong in May 2016. Financial support by the Research Grants Council of the Hong Kong Special Administrative Region, China, through General Research Fund Project No. 17206615 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-On Ng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajravelu, K., Prasad, K.V., Ng, CO. et al. MHD Flow and Heat Transfer Over a Slender Elastic Permeable Sheet in a Rotating Fluid with Hall Current. Int. J. Appl. Comput. Math 3, 3175–3200 (2017). https://doi.org/10.1007/s40819-016-0291-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0291-3

Keywords

Navigation