Skip to main content
Log in

A New Iteration Method Based on Green’s Functions for the Solution of PDEs

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A novel approach that combines iterative methods and Green’s functions is presented for the numerical treatment of a class of partial differential equations (PDEs) subject to specified boundary conditions. The essence of the proposed strategy is to define an integral operator, expressed in terms of Green’s function, and then apply well-known fixed point iterations schemes, including Picard’s and Krasnoselskii–Mann’s. The technique is implemented on a number of examples, including linear and nonlinear PDEs. These numerical experiments elucidate reliability and efficiency of the approach. The results are very promising as they yield highly accurate approximations when compared to closed-form solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abushammala, M., Khuri, S.A., Sayfy, A.: A novel fixed point iteration method for the solution of third order boundary value problems. Appl. Math. Comput. 271, 131–141 (2015)

    MathSciNet  Google Scholar 

  2. Alam, J.M., Kevlahan, N.K.-R., Vasilyev, O.V.: Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations. J. Comput. Phys. 214, 829–857 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ali, A.H.A., Raslan, K.R.: Variational iteration method for solving partial differential equations with variable coefficients. Chaos Solitons Fractals 40, 1520–1529 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  5. Biazar, J., Ghazvini, H.: He’s variational iteration method for fourth-order parabolic equations. Comput. Math. Appl. 54(7), 1047–1054 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biazar, J., Ghazvini, H.: Homotopy perturbation method for solving hyperbolic partial differential equations. Comput. Math. Appl. 56(2), 453–458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biazar, J., Ghazvini, H.: Convergence of the homotopy perturbation method for partial differential equations. Nonlinear Anal. Real World Appl. 10, 2633–2640 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bildik, N., Konuralp, A.: The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 7(1), 65–70 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bougoffa, L., Rach, R.C.: Solving nonlocal initial-boundary value problems for linear and nonlinear parabolic and hyperbolic partial differential equations by the Adomian decomposition method. Appl. Math. Comput. 225, 50–61 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Deeba, E.Y., Khuri, S.A.: The solution of nonlinear compartmental models. Math. Comput. Model. 25(5), 87–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dehghan, M., Shakeri, F.: Application of He’s variational iteration method for solving the Cauchy reaction–diffusion problem. J. Comput. Appl. Math. 214(2), 435–446 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299, 179–188 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Evans, D.J., Raslan, K.R.: The tanh-function method for solving some important nonlinear partial differential equation. Int. J. Comput. Math. 82, 897–905 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garca-Olivares, A.: Analytical approximants of time-dependent partial differential equations with tau methods. Math. Comput. Simul. 61(1), 35–45 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Golbabai, A., Javidi, M.: A variational iteration method for solving parabolic partial differential equations. Comput. Math. Appl. 54, 987–992 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Golberg, M.A., Chen, C.S.: The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations. Bound. Elem. Commun. 5, 57–61 (1994)

    Google Scholar 

  17. Goyal, K., Mehra, M.: An adaptive mesh free diffusion wavelet method for partial differential equations on the sphere. J. Comput. Phys. 272, 747–771 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hassan, H.N., El-Tawil, M.A.: A new technique of using homotopy analysis method for second order nonlinear differential equations. Appl. Math. Comput. 219, 708–728 (2012)

    MATH  MathSciNet  Google Scholar 

  19. He, J.H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19, 847–851 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M.: A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model. 38, 1597–1606 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khuri, S.A.: On the decomposition method for the approximate solution of nonlinear ordinary differential equations. Int. J. Math. Educ. Sci. Technol. 32(4), 525–539 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Khuri, S.A.: Exact solutions for a class of nonlinear evolution equations: a unified ansätze approach. Chaos Solitons Fractals 36(5), 1181–1188 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Khuri, S.A., Sayfy, A.: A spline collocation approach for a generalized parabolic problem subject to non-classical conditions. Appl. Math. Comput. 218(18), 9187–9196 (2012)

    MATH  MathSciNet  Google Scholar 

  24. Khuri, S.A., Sayfy, A.: Variational iteration method: Green’s functions and fixed point iterations perspective. Appl. Math. Lett. 32, 24–34 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khuri, S.A., Sayfy, A.: A novel fixed point scheme: proper setting of variational iteration method for BVPs. Appl. Math. Lett. 48, 75–84 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kumar, M., Mishra, G.: An introduction to numerical methods for the solutions of partial differential equations. Appl. Math. 2011(2), 1327–1338 (2011)

    Article  Google Scholar 

  27. Kythe, P.K.: Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation. Applied Mathematics and Nonlinear Science. Chapman & Hall/CRC Press, London, Boca Raton (2009)

    Google Scholar 

  28. Mirzaee, F., Bimesl, S.: A new approach to numerical solution of second-order linear hyperbolic partial differential equations arising from physics and engineering. Results Phys. 3, 241–247 (2013)

    Article  Google Scholar 

  29. Raslan, K.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53(4), 281–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tohidi, E.: Legendre approximation for solving linear HPDEs and comparison with Taylor and Bernoulli matrix methods. Appl. Math. 3, 410–416 (2012)

    Article  MathSciNet  Google Scholar 

  31. Tohidi, E., Shirazian, M.: Numerical solution of linear HPDEs via Bernoulli operational matrix of differentiation and comparison with Taylor matrix method. Math. Sci. Lett. 1(1), 61–70 (2012)

    Article  Google Scholar 

  32. Tsai, C.-C.: Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations. Eng. Anal. Bound. Elem. 36(8), 1226–1234 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wazwaz, A.M.: Analytical treatment for variable coefficients fourth-order parabolic partial differential equations. Appl. Math. Comput. 123, 219–227 (2001)

    MATH  MathSciNet  Google Scholar 

  34. Yalinba, S., Sezer, M., Sorkun, H.H.: Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Comput. 210(2), 334–349 (2009)

    MATH  MathSciNet  Google Scholar 

  35. Yüzbaşi, S., Şahin, N., Sezer, M.: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput. Math. Appl. 61, 3079–3096 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khuri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuri, S.A., Sayfy, A. & Zaveri, A. A New Iteration Method Based on Green’s Functions for the Solution of PDEs. Int. J. Appl. Comput. Math 3, 3091–3103 (2017). https://doi.org/10.1007/s40819-016-0289-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0289-x

Keywords

Navigation