Skip to main content
Log in

The Classification of the Single Traveling Wave Solutions to the Modified Fornberg–Whitham Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of present paper is to obtain the analytical solution of modified Fornberg–Whitham equation by using \(\tan (\phi /2)\)-expansion and \(\tanh (\phi /2)\)-expansion methods. These methods are used to construct solitary and soliton solutions of nonlinear evolution equation. These methods are straightforward and concise, and their applications are promising. These methods are developed for searching exact traveling wave solutions of nonlinear partial differential equations. The exact particular solutions containing five types hyperbolic function solution, trigonometric function solution, exponential solution, logarithmic solution and rational solution. The expansion methods presents a wider applicability for handling nonlinear wave equations. Also, their are shown that the expansion methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Whitham, G.B.: Variational methods and applications to water wave. Proc. R. Soc. Lond. Ser. A 299, 625 (1967)

    Article  MATH  Google Scholar 

  2. Zhou, J., Tian, L.: A type of bounded traveling wave solutions for the Fornberg–Whitham equation. J. Math. Anal. Appl. 346, 255–261 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. 289, 373–404 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shirvani, V., Nadjafikhah, M.: Conservation laws and exact solutions of the Whitham-type equations. Commun. Nonlinear Sci. Numer. Simul. 19, 2212–2219 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dehghan, M., Manafian, J.: Study of the wave-breaking’s qualitative behavior of the Fornberg–Whitham equation via quasi-numeric approaches. Int. J. Numer. Methods Heat Fluid Flow 22, 537–553 (2012)

    Article  Google Scholar 

  6. He, B., Meng, Q., Li, S.L.: Explicit peakon and solitary wave solutions for the modified Fornberg–Whitham equation. Appl. Math. Comput. 217, 1976–1982 (2010)

    MATH  MathSciNet  Google Scholar 

  7. Dai, D.Y., Yuan, Y.P.: The classification and representation of single traveling wave solutions to the generalized Fornberg–Whitham equation. Appl. Math. Comput. 242, 729–735 (2014)

    MATH  MathSciNet  Google Scholar 

  8. Fazli Aghdaei, M., Manafianheris, J.: Exact solutions of the couple Boiti–Leon–Pempinelli system by the generalized \(\rm (\frac{G^{\prime }}{G})\)-expansion method. J. Math. Ext. 5, 91–104 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Manafian Heris, J., Bagheri, M.: Exact solutions for the modified KdV and the generalized KdV equations via Exp-function method. J. Math. Ext. 4, 77–98 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: Travelling wave solutions for combined and double combined sine–cosine–Gordon equations by the variable separated ODE method. Appl. Math. Comput. 177, 755–760 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Dehghan, M., Manafian, J.: The solution of the variable coefficients fourth-order parabolic partial differential equations by homotopy perturbation method. Z. Naturforsch 64, 420–430 (2009)

    Google Scholar 

  12. Kumar, D., Singh, J., Kumar, S.: Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method. J. Assoc. Arab Univ. Basic Appl. Sci. 17, 20–26 (2015)

    Google Scholar 

  13. Dehghan, M., Manafian Heris, J., Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method. Z. Naturforsch 65a, 935–949 (2010)

    MATH  Google Scholar 

  14. Dehghan, M., Manafian Heris, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)

    MATH  MathSciNet  Google Scholar 

  15. He, J.H.: Non-perturbative method for strongly nonlinear problems. Dissertation, De-Verlag im Internet GmbH, Berlin (2006)

  16. He, J.H.: Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  17. Dehghan, M., Tatari, M.: Identifying an unknown function in a parabolic equation with overspecified data via He’s variational iteration method. Chaos Solitons Fractals 36, 157–166 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, X.-J.: A new integral transform with an application in heat-transfer problem. Therm. Sci. 20, 677–681 (2016)

    Article  Google Scholar 

  19. Yang, X.-J.: A new integral transform method for solving steady heat-transfer problem. Therm. Sci. 20, 639–642 (2016)

    Article  Google Scholar 

  20. Yang, X.-J.: A new integral transform operator for solving the heat-diffusion problem. Appl. Math. Lett. 64, 193–197 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  21. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dehghan, M., Manafian Heris, J., Saadatmandi, A.: Application of the exp-function method for solving a partial differential equation arising in biology and population genetics. Int. J. Numer. Methods Heat Fluid Flow 21, 736–753 (2011)

    Article  MathSciNet  Google Scholar 

  23. Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 1–8 (2010) Article ID 065003

  24. Manafian, J., Zamanpour, I.: Analytical treatment of the coupled Higgs equation and the Maccari system via exp-function method. Acta Universitatis Apulensis 33, 203–216 (2013)

    MATH  MathSciNet  Google Scholar 

  25. Jabbari, A., Manafian Heris, J., Kheiri, H., Bekir, A.: A generalization of (G’/G)-expansion method and its application to nonlinear reaction-diffusion equations arising in mathematical biology. Int. J. Biomath. 7, 1–10 (2014) Article ID 1450025

  26. Naher, H., Abdullah, F.A.: Further extension of the generalized and improved (G’/G)-expansion method for nonlinear evolution equation. J. Assoc. Arab Univ. Basic. Appl. Sci. 19, 52–58 (2016)

    Google Scholar 

  27. Manafianheris, J.: Solving the integro-differential equations using the modified Laplace Adomian decomposition method. J. Math. Ext. 6, 1–15 (2012)

    MATH  MathSciNet  Google Scholar 

  28. Bagheri, M., Manafian Heris, J.: Differential transform method for solving the linear and nonlinear Westervelt equation. J. Math. Ext. 6, 81–91 (2012)

    MathSciNet  Google Scholar 

  29. Manafian Heris, J., Lakestani, M.: Solitary wave and periodic wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized tanh-coth method. Commun. Numer. Anal. 2013, 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  30. Manafian, J., Zamanpour, I.: Exact travelling wave solutions of the symmetric regularized long wave (SRLW) using analytical methods, Statistics. Opt. Inf. Comput. 2, 47–55 (2014)

    Google Scholar 

  31. Zayed, E.M.E., Alurrfi, K.A.E.: The generalized projective Riccati equations method for solving nonlinear evolution equations in mathematical physics. Abs. Appl. Anal. 2014, 1–11 (2014) Article ID 259190

  32. Khan, K., Akbar, M.A., Rashidi, M.M., Zamanpour, I.: Exact traveling wave solutions of an autonomous system via the enhanced (G’/G)-expansion method. Waves Rand. Comp. Media (2015). doi:10.1080/17455030.2015.1068964

    MathSciNet  Google Scholar 

  33. Zhao, X., Wang, L., Sun, W.: The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solitons Frac. 28, 448–453 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Baskonus, H.M., Bulut, H.: Exponential prototype structures for (2+1)-dimensional Boiti–Leon–Pempinelli systems in mathematical physics. Waves Rand. Comp. Media 26, 201–208 (2016)

    MathSciNet  Google Scholar 

  35. Baskonus, H.M., Bulut, H.: New wave behaviors of the system of equations for the ion sound and Langmuir Waves. Waves Rand. Comp. Media (2016). doi:10.1080/17455030.2016.1181811

    MATH  MathSciNet  Google Scholar 

  36. Manafian, J., Lakestani, M.: Application of \(tan(\phi /2)\)-expansion method for solving the Biswas–Milovic equation for Kerr law nonlinearity. Optik 127, 2040–2054 (2016)

    Article  Google Scholar 

  37. Manafian, J., Lakestani, M.: Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics. Opt. Quantum Electron 48, 1–32 (2016)

    Article  Google Scholar 

  38. Manafian, J.: Optical soliton solutions for Schrödinger type nonlinear evolution equations by the \(tan(\phi /2)\)-expansion method. Optik 127, 4222–4245 (2016)

    Article  Google Scholar 

  39. Manafian, J., Lakestani, M.: Abundant soliton solutions for the Kundu–Eckhaus equation via \(tan(\phi /2)\)-expansion method. Optik 127, 5543–5551 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Manafian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manafian, J., Lakestani, M. The Classification of the Single Traveling Wave Solutions to the Modified Fornberg–Whitham Equation. Int. J. Appl. Comput. Math 3, 3241–3252 (2017). https://doi.org/10.1007/s40819-016-0288-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0288-y

Keywords

Mathematics Subject Classification

Navigation