Skip to main content
Log in

Hybrid Numerical Solution of Mixed Convection Boundary Layer Flow of Nanofluid Along an Inclined Plate with Prescribed Surface Fluxes

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The present paper contains a numerical study using hybrid approach on mixed convective boundary layer flow of a nanofluid past an inclined plate embedded in a porous medium. The inclined plate is maintained at uniform and constant heat, mass and nanoparticle fluxes, and the behavior of the porous medium is described by the Darcy’s model. The model considered for nanofluids incorporates the effects of Brownian motion and thermophoresis. Using appropriate similarity variables, system of non-linear ordinary differential equations are solved by hybrid approach consisting of finite element method and symbolic computation. The other effect of mixed convection parameter, buoyancy ratio parameter and inclination angle on the temperature, concentration of both salts and nanoparticle volume fraction are shown. It is found that concentration of salts and nanoparticle volume fraction decreases with increasing mixed convection parameter in the presence of nanofluid and both salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

K :

Permeability of the porous medium

\(K_m\) :

Thermal conductivity

Nur :

Reduced Nusselt number

\(Nu_x\) :

Local Nusselt number

\(Ra_x\) :

Local Rayleigh number

\(Shr^1\) :

Reduced solutal sherwood number for salt 1

\(Shr^2\) :

Reduced solutal sherwood number for salt 2

\(Sh_x^1\) :

Local solutal Sherwood number for salt 1

\(Sh_x^2\) :

Local solutal Sherwood number for salt 2

\(\frac{Ra_x}{Pe_x}\) :

Mixed convection parameter (\(Pe_x\ne 0\))

\(Pe_x\) :

Local Peclet number

g :

Acceleration due to gravity

\(D_{TC_1}\) :

Dufour diffusivite

\(D_{TC_2}\) :

Dufour diffusivite

\(D_{C_1T}\) :

Soret diffusivite

\(D_{C_2T}\) :

Soret diffusivite

\(D_{S_1}\) :

Solutal diffusivite of the porous medium

\(D_{S_2}\) :

Solutal diffusivite of the porous medium

\(D_T\) :

Thermophoretic diffusion coefficient

\(D_B\) :

Brownian diffusion coefficient

C :

Nanoparticle volume fraction

\(C_1\) :

Solutal concentration of salt 1

\(C_2\) :

Solutal concentration of salt 2

\(\beta _{C1}\) :

Volumetric solutal expansion coefficient of the fluid

\(\beta _{C2}\) :

Volumetric solutal expansion coefficient of the fluid

\(C_{1\infty }\) :

Ambient solutal concentration of salt 1 attained as y tends to infinity

\(C_{2\infty }\) :

Ambient solutal concentration of salt 2 attained as y tends to infinity

\(C_\infty \) :

Ambient nanoparticle volume fraction

T :

Local fluid temperature

\(T_\infty \) :

Ambient temperature

\(Ld_1\) :

Dufour-solutal Lewis numbers of salt 1

\(Ld_2\) :

Dufour-solutal Lewis numbers of salt 2

Nb :

Brownian motion parameter

\(Nc_1\) :

Buoyancy ratio of salt 1

\(Nc_2\) :

Buoyancy ratio of salt 2

\(Nd_1\) :

Modified Dufour parameters of salt 1

\(Nd_2\) :

Modified Dufour parameters of salt 2

Nr :

Nanofluid buoyancy ratio

\(q_w\) :

Wall heat flux

\(q_{m_1},~q_{m_2}\) :

Solutal mass flux

\(q_{np}\) :

Nanoparticle mass flux

(xy):

Cartesian co-ordinate

(uv):

Velocity components along x and y axes

\(\theta \) :

Dimensionless heat transfer

\(\gamma _1\) :

Dimensionless solutal concentration of salt 1

\(\gamma _2\) :

Dimensionless solutal concentration of salt 2

\(\alpha _m\) :

Thermal diffusivity of porous medium

\(\beta _T\) :

Volumetric thermal expansion coefficient of the fluid

\((\rho c)_f\) :

Effective heat capacity of the fluid

\((\rho c)_p\) :

Effective heat capacity of the nanoparticle material

\((\rho c)_m\) :

Effective heat capacity of the porous medium

\(\tau *\) :

Parameter define in the manuscript \(\frac{\varepsilon (\rho c)_p}{(\rho c)_f}\)

\(\upsilon \) :

Kinematic viscosity of the fluid

\(\rho _p\) :

Nanoparticle mass density

\(\rho _f\) :

Fluid density

\(\psi \) :

Stream function

\(\mu \) :

Absolute viscosity of the fluid

\(\eta \) :

Similarity variable

\(\delta '\) :

Acute angle of the plate to the vertical

\(\omega \) :

Condition of the plate

\( \infty \) :

Condition far away from the plate

References

  1. Nazar, R., Tham, L., Pop, I., Ingham, D.B.: Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a Porous Medium filled with a nanofluid. Transp. Porous Med. 86, 517–536 (2011)

    Article  Google Scholar 

  2. Chamkha, S., Abbashandy, A.J., Rashed, A.M., Vajravelu, K.: Radiation effects of mixed convection about a cone embedded in a Porous Medium filled with a nanofluid. Meccanica 48, 275–285 (2013)

    Article  MathSciNet  Google Scholar 

  3. RamReddy, Ch., Murthy, P.V.S.N., Chamkha, A.J., Rashad, A.M.: Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transfer 64, 384–392 (2013)

    Article  Google Scholar 

  4. Rana, P., Bhargava, R., Beg, O.A.: Numerical solution of mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. Comput. Math. Appl. 64, 2816–2832 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Rohni, A.M., Ahmad, S., Merkin, J.H., Pop, I.: Mixed convection boundary-layer flow along a vertical cylinder embedded in a porous medium filled by a nanofluid. Transp. Porous Med. 96, 237–253 (2013)

    Article  Google Scholar 

  6. Rosca, A.V., Rosca, N.C., Grosan, T., Pop, I.: Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated in a porous media. Int. Commun. Heat Mass Transfer 39, 1080–1085 (2012)

    Article  MATH  Google Scholar 

  7. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  8. Khanafer, K., Vafai, K., Light Stone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  9. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided Lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  10. Kuznetsov, A.V., Nield, D.A.: The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 65, 682–685 (2013)

    Article  Google Scholar 

  11. Khan, Z.H., Khan, W.A., Pop, I.: Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition. Int. J. Heat Mass Transf. 66, 603–612 (2013)

    Article  Google Scholar 

  12. Rionero, S.: Triple diffusive convection in porous media. Acta Mech. 224(2), 447–458 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuznetsiv, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  14. Kuznetsov, A.V., Nield, D.A.: Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 50, 712–717 (2011)

    Article  Google Scholar 

  15. Bachok, N., Ishak, A., Pop, I.: Boundary layer flow of nanofluid over a moving surface in a flowing fluid. Int. J. Therm. Sci. 49(9), 1663–1668 (2010)

    Article  Google Scholar 

  16. Bhargava, R., Sharma, R., Beg, O.A.: Oscillatory chemically-reacting MHD free convection heat and mass transfer in a porous medium with soret and dufour effects: finite element modeling. Int. J. Appl. Math. Mech. 5(6), 15–37 (2009)

    Google Scholar 

  17. Murthy, P.V.S.N., Singh, P.: Heat and mass transfer by natural convection in a non-darcian porous medium. Acta Mech. 138, 243–254 (1999)

    Article  MATH  Google Scholar 

  18. Yadav, D., Lee, D., Cho, H.H., Lee, J.: The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: a revised model. J. Porous Media 19(1), 31–46 (2016)

    Article  Google Scholar 

  19. Yadav, D., Wang, J., Bhargava, R., Lee, J., Cho, H.H.: Numerical investigation of the effect of magnetic field on the onset of nanofluid convection. Appl. Therm. Eng. 103, 1441–1449 (2016)

    Article  Google Scholar 

  20. Yadav, D., Nam, D., Lee, J.: The onset of transient Soret-driven MHD convection confined within a Hele-Shaw cell with nanoparticles suspension. J. Taiwan Inst. Chem. Eng. 58, 235–244 (2016)

    Article  Google Scholar 

  21. Yadav, D., Lee, J.: The onset of MHD nanofluid convection with Hall current effect. Euro. Phys. J. Plus 130(8), 1–22 (2015)

    Article  Google Scholar 

  22. Yadav, D., Lee, J., Cho, H.H.: Brinkman convection induced by purely internal heating in a rotating porous medium layer saturated by a nanofluid. Powder Technol. 286, 592–601 (2015)

    Article  Google Scholar 

  23. Yadav, D., Lee, J.: The onset of convection in a nanofluid layer confined within a Hele–Shaw cell. J. Appl. Fluid Mech. 9(2), 512–527 (2015)

    Google Scholar 

  24. Yadav, D., Agrawal, G.S., Lee, J.: Thermal instability in a rotating nanofluid layer: a revised model. Ain Shams Eng. J. 7(1), 431–440 (2016)

    Article  Google Scholar 

  25. Lai, F.C., Kulacki, F.A.: Coupled heat and mass transfer by natural convection from vertical surface in porous medium. Int. J. Heat Mass Transf. 34, 1189–1194 (1991)

    Article  Google Scholar 

  26. Bejan, A., Khair, K.R.: Heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transf. 28, 243–254 (1985)

    MATH  Google Scholar 

  27. Lai, F.C.: Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium. Int. Commun. Heat Mass Transf. 18, 93–106 (1991)

    Article  Google Scholar 

  28. Pillwein, V.: Symboilic computation and finite element methods, symbolic computation for PDE. Springer, Berlin (2015)

    MATH  Google Scholar 

  29. Fitch, J., Hall, R.: Symbolic Computation and Finite Element Method, Lecture Note for Computer Science, pp. 95–96 (2005)

  30. Fellipa, C.L.: A compendium of FEM integration formulas for symbolic work. Eng. Comput. 21, 867–890 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

All authors acknowledge the financial support received through the project supported by SERB. The help rendered by Ms. Rangoli Goyal, Research Scholar, Department of Mathematics is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Bhargava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, R., Pratibha & Chandra, H. Hybrid Numerical Solution of Mixed Convection Boundary Layer Flow of Nanofluid Along an Inclined Plate with Prescribed Surface Fluxes. Int. J. Appl. Comput. Math 3, 2909–2928 (2017). https://doi.org/10.1007/s40819-016-0278-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0278-0

Keywords

Navigation