Skip to main content
Log in

Magnetohydrodynamics Flow of Non-Newtonian Fluid from a Vertical Permeable Cone in the Presence of Thermal Radiation and Heat Generation/Absorption

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The nonlinear, steady state magnetohydrodynamics natural convection boundary layer flow, heat and mass transfer of an viscoelastic incompressible Jeffrey’s fluid from a vertical permeable cone with thermal radiation and heat generation/absorption effects is investigated in this article. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit finite-difference Keller box technique. The Rosseland diffusion algebraic approximation is utilized to simulate thermal radiation effects. The surface of the cones is maintained at a constant temperature and concentration with mass flux present. Excellent correlation of the present results with previous studies is obtained to validate the numerical code. The influence of Deborah number (De), ratio of relaxation to retardation times (\(\lambda \)), radiation parameter (F), heat generation/absorption parameter (\(\Delta \)), suction/injection parameter (\(f_{w}\)), magnetic parameter (M) and dimensionless tangential coordinate (\(\xi \)) on velocity, temperature and concentration evolution in the boundary layer regime are examined in detail. Also, the effects of these parameters on local skin friction, heat transfer rate and mass transfer rate are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Half angle of the cone

B :

Material parameter

\(B_{0}\) :

Constant imposed magnetic field

C :

Concentration

\(C_{f}\) :

Skin friction coefficient

\(c_{p }\) :

Specific heat parameter

\(\textit{De}\) :

Deborah number

\(D_{m }\) :

Mass (species) diffusivity

f :

Non-dimensional steam function

\(f_{w}\) :

Suction/injection parameter

F :

Thermal Radiation

g :

Acceleration due to gravity

\(Gr_{x}\) :

Grashof (free convection) number

K :

Thermal diffusivity

k :

Thermal conductivity of the fluid

\(k^{*}\) :

Mean absorption coefficient

M :

Magnetic parameter

N :

Concentration to thermal buoyancy ratio parameter

\(\textit{Nu}\) :

Heat transfer rate (Local Nusselt number)

\(\textit{Pr}\) :

Prandtl number

\(q_{r}\) :

Radiative heat flux

r :

Local radius of the cone

S :

Cauchy stress tensor

\(\textit{Sc}\) :

Local Schmidt number

\(\textit{Sh}\) :

Mass transfer rate (Local Sherwood number)

T :

Temperature of the fluid

uv :

Non-dimensional velocity components along the x- and y-directions, respectively

x :

Stream wise coordinate

y :

Transverse coordinate

\(\alpha \) :

Thermal diffusivity

\(\beta \) :

Coefficient of thermal expansion

\(\beta ^{*}\) :

Coefficient of concentration expansion

\(\lambda \) :

Ratio of relaxation to retardation times

\(\lambda _1\) :

Retardation time

\(\eta \) :

Dimensionless radial coordinate

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\theta \) :

Non-dimensional temperature

\(\phi \) :

Non-dimensional concentration

\(\rho \) :

Density of fluid

\(\xi \) :

Dimensionless tangential coordinate

\(\psi \) :

Dimensionless stream function

\(\Delta \) :

Heat generation (source)/heat absorption (sink) parameter

\(\sigma ^{*}\) :

Stefan–Boltzmann constant

w :

Surface conditions on cone surface

\(\infty \) :

Free stream conditions

References

  1. Kothandapani, M., Srinivas, S.: Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int. J. Non Linear Mech. 43(9), 915–924 (2008)

    Article  Google Scholar 

  2. Shehzad, S.A., Alsaedi, A., Hayat, T.: Three-dimensional flow of Jeffery fluid with convective surface boundary conditions. Int. J. Heat Mass Transf. 55(15–16), 3971–3976 (2012)

    Article  Google Scholar 

  3. Turkyilmazoglu, M., Pop, I.: Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. Int. J. Heat Mass Transf. 57(1), 82–88 (2013)

    Article  Google Scholar 

  4. Hamad, M.A.A., AbdEl-Gaied, S.M., Khan, W.A.: Thermal jump effects on boundary layer flow of a Jeffrey fluid near the stagnation point on a stretching/shrinking sheet with variable thermal conductivity. J. Fluids 2013, Article ID 749271, 8 pages (2013)

  5. Hayat, T., Hussain, T., Shehzad, S.A., Alsaedi, A.: Thermal and concentration stratifications effects in radiative flow of Jeffrey fluid over a stretching sheet. PLoS ONE 9(10), e107858 (2014)

    Article  Google Scholar 

  6. Hayat, T., Muhammad, T., Shehzad, S.A., Alsaedi, A.: Three-dimensional flow of Jeffrey nanofluid with a new mass flux condition. J. Aerosp. Eng. (2015). doi:10.1061/(ASCE)AS.1943-5525.0000549

    MATH  Google Scholar 

  7. Das, K., Acharya, N., Kumar Kundu, P.: Radiative flow of MHD Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer. Alex. Eng. J. 54(4), 815–821 (2015). doi:10.1016/j.aej.2015.06.008

    Article  Google Scholar 

  8. Gao, C., Jian, Y.: Analytical solution of magnetohydrodynamic flow of Jeffrey fluid through a circular microchannel. J. Mol. Liq. 211, 803–811 (2015)

    Article  Google Scholar 

  9. Abd-Alla, A.M., Abo-Dahab, S.M.: Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J. Magn. Magn. 374(15), 680–689 (2015)

    Article  Google Scholar 

  10. Ozisik, M.N.: Thermal Radiation Transfer and Interactions with Conduction and Convection. Wiley, New York (1973)

    Google Scholar 

  11. Sparrow, E.M., Cess, R.D.: Radiation Heat transfer. Augmented edition, hemisphere media. Int. J. Heat Mass Transf. 5, 179–806 (1962)

    Google Scholar 

  12. Cess R.D.: The interaction of thermal radiation in boundary layer heat transfer. In: Proceedings of the 3rd International Heat Transfer Conference, vol. 5, pp. 154–163 (1966)

  13. Arpaci, V.S.: Effect of thermal radiation on the laminar free convection from a heated vertical plate. Int. J. Heat Mass Transf. 11(5), 871–881 (1968). doi:10.1016/0017-9310(68)90130-0

    Article  MATH  Google Scholar 

  14. Hossain, M.A., Kutubuddin, M., Pop, I.: Effect of conduction-radiation interaction on the mixed convection flow from a horizontal cylinder. Heat Mass Transf. 35, 307–314 (1999). doi:10.1007/s002310050329

    Article  Google Scholar 

  15. Hossain, M.A., Anghel, M., Pop, I.: Thermal radia-tion effects on free convection over a rotating axi-symmetric body with application to a rotating hemi-sphere. Arch. Mech. 54, 55–74 (2002)

    MATH  Google Scholar 

  16. Hossain, M.A., Munir, M.S.: Natural convection flow of a viscous fluid about a truncated cone with temperature dependent viscosity and thermal conductivity. Int. J. Numer. Methods Heat Fluid Flow 11(6), 494–510 (2001). doi:10.1108/09615530110399459

    Article  MATH  Google Scholar 

  17. Hossain, M.A., Rees, D.A.S.: Radiation conduction interaction on mixed convection flow along a slender vertical cylinder. AIAA J. Thermophys. Heat Transf. 12, 611–614 (1998)

    Article  Google Scholar 

  18. Molla, M.M., Hossain, M.A.: Radiation effect on mixed convection laminar flow along a vertical wavy surface. Int. J. Therm. Sci. 46(9), 926–935 (2007). doi:10.1016/j.ijthermalsci.2006.10.010

    Article  Google Scholar 

  19. Siddiqa, S., Asghar, S., Hossain, M.A.: Radiation effects on natural convection flow over an inclined flat plate with temperature-dependent viscosity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225(2), 407–419 (2011). doi:10.1243/09544062JMES2205

    Article  Google Scholar 

  20. Siddiqa, S., Asghar, S., Hossain, M.A.: Radiation effect on mixed convection flow of viscous fluid hav-ing temperature dependent density along permeable vertical plate. J. Eng. Phys. Thermophys. 85(2), 339–348 (2012). doi:10.1007/s10891-012-0658-1

    Article  Google Scholar 

  21. Prasad, V.R., Bhaskar Reddy, N., Muthucumaraswamy, R., Vasu, B.: Finite difference analysis of radiative free convection flow past an impulsively started vertical plate with variable heat and mass flux. J. Appl. Fluid Mech. 4(1), 59–68 (2011)

    Google Scholar 

  22. Ara, A., alam Khan, N., Khan, H., Sultan, F.: Radiation effect on boundary layer flows of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain Shams Eng. J. 5(4), 1337–1342 (2014)

    Article  Google Scholar 

  23. Huges, W.F., Young, F.J.: The Electro Magneto Dynamics of fluids. Wiley, New York (1966)

    Google Scholar 

  24. Raptis, A.: Flow through a porous medium in the presence of magnetic field. Int. J. Energy Res. 10, 97–101 (1986)

    Article  Google Scholar 

  25. Helmy, K.A.: MHD unsteady free convection flow past a vertical porous plate. ZAMM 78, 255–270 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Elabashbeshy, E.M.A.: Heat and Mass transfer along a vertical plate with variable surface temperature and concentration in the presence of the magnetic field. Int. J. Eng Sci. 34, 515–522 (1997)

    Article  Google Scholar 

  27. Pal, D., Mondal, H.: Influence of temperature-dependent viscosity and thermal radiation on MHD forced convection overa non-isothermal wedge. Appl. Math. Comput. 212, 194–208 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Loganathan, P., Puvi Arasu, P.: Thermophoresis effects on non-Darcy MHD mixed convective heat and mass transfer past a porous wedge in the presence of suction/injection. Theor. Appl. Mech 37, 203–227 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Abdul Gaffar, S., Prasad, V.R., Vijaya, B. , Anwar Beg, O.: Mixed convection flow of magnetic viscoelastic polymer from a non isothermal wedge with biot number effects. Int. J. Eng. Math. 2015, Article ID 287623, 15 Pages. doi:10.1155/2015/287623

  30. Hayat, T., Shafiq, A., Alsaedi, A.: MHD axisymmetric flow of third grade fluid by a stretching cylinder. Alex. Eng. J. 54(2), 205–212 (2015). doi:10.1016/j.aej.2015.03.013

    Article  Google Scholar 

  31. Hering, R.G., Grosh, R.J.: Laminar free convection from a non-isothermal cone. Int. J. Heat Mass Transf. 5, 1059–1068 (1962)

    Article  Google Scholar 

  32. Na, T.Y., Chiou, J.P.: Laminar natural convection over a frustum of a cone. Appl. Sci. Res. 35, 409–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yih, K.A.: Effect of radiation on natural convection about a truncated cone. Int. J. Heat Mass Transf. 42, 4299–4305 (1999)

    Article  MATH  Google Scholar 

  34. Pop, I., Na, T.Y.: Natural convection over a vertical wavy frustum of a cone. Int. J. Non Linear Mech. 34, 925–934 (1999)

    Article  MATH  Google Scholar 

  35. Hossain, M.A., Paul, S.C.: Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech. 151, 103–114 (2001)

    Article  MATH  Google Scholar 

  36. Kairi, R.R.: PVSN Murthy investigated the effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium. Appl. Math. Comput. 217(20), 44–48 (2011)

    MathSciNet  Google Scholar 

  37. Cheng, C.-Y.: Natural convection boundary layer flow of a micropolar fluid over a vertical permeable cone with variable temperature. Int. Commun. Heat Mass Transf. 30, 429–433 (2011)

    Article  Google Scholar 

  38. Noghrehabadi, A., Behseresht, A., Ghalambaz, M.: Natural convection flow of nanofluids over a vertical cone embedded in non-Darcy porous media. J. Thermophys. Heat Transf. 27(2), 334–341 (2013)

    Article  Google Scholar 

  39. Nadeem, S., Saleem, S.: Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles. Int. J. Heat Mass Transf. 85, 1041–1048 (2015)

    Article  Google Scholar 

  40. Nadeem, S., Akbar, N.S.: Peristaltic flow of a Jeffrey fluid with variable viscosity in an asymmetric channel. Z Naturforsch A 64(a), 22–713 (2009)

    Google Scholar 

  41. Hayat, T., Shehzad, S.A., Qasim, M., Obaidat, S.: Radiative flow of Jeffery fluid in a porous medium with power law heat flux and heat source. Nucl. Eng. Des. 243, 15–19 (2012)

    Article  Google Scholar 

  42. Qasim, M.: Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alex. Eng. J. 52, 571–5 (2013)

    Article  Google Scholar 

  43. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1. Fluid Mechanics. Wiley, New York (1977)

    Google Scholar 

  44. Gorla, R.S.R.: Radiative effect on conjugate forced convection in a laminar wall jet along a flat plate. In: Ibragimov, M.J., Anisimov, M.A. (eds.) Encyclopedia Fluid Mechanics, Suppl. 3: Advances in Flows Dynamics. Gulf Publishing, Texas (1993)

  45. Bég, O., Anwar, J., Zueco, S.K., Heidari, A.: Unsteady magnetohydrodynamic heat transfer in a semi-infinite porous medium with thermal radiation flux: analytical and numerical study. Adv. Numer. Anal. 2011, 1–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978)

    Article  MathSciNet  Google Scholar 

  47. Anwar Bég, O.: Numerical methods for multi-physical magnetohydrodynamics, Chapter 1. In: Cheremisinoff, N.P. (ed.) New Developments in Hydrodynamics Research, pp. 1–112. Nova Science, New York (2012)

  48. Hossain, M.A., Paul, S.C.: Free convection from a vertical permeable circular cone with non-uniform surface temperature. Acta Mech. 151, 103–114 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to both reviewers and their comments which have served to significantly improve the interpretative and other aspects of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Gaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul Gaffar, S., Prasad, V.R. & Reddy, E.K. Magnetohydrodynamics Flow of Non-Newtonian Fluid from a Vertical Permeable Cone in the Presence of Thermal Radiation and Heat Generation/Absorption. Int. J. Appl. Comput. Math 3, 2849–2872 (2017). https://doi.org/10.1007/s40819-016-0262-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0262-8

Keywords

Navigation