Baeumer, B., Meerschaert, M.M., Benson, D.A., Wheatcraft, S.W.: Subordinate advection-dispersion equation for contaminant transport. Water Resour. Res. 37, 1543–1550 (2001)
Article
Google Scholar
Bonilla, B., Rivero, M., Trujillo, J.J.: On system of linear fractional differential equations with constant coefficients. Appl. Math. Comput. 187, 68–78 (2007)
MathSciNet
MATH
Google Scholar
Dehghan, M.: Numerical solution of three-dimensional advection-diffusion equation. Appl. Math. Comput. 150, 5–19 (2004)
MathSciNet
MATH
Google Scholar
Dehghan, M.: Fully implicit finite difference methods for two-dimensional diffusion with non-local boundary condition. J. Comput. Appl. Math. 106, 255–269 (1999)
MathSciNet
Article
MATH
Google Scholar
Dehghan, M.: Fully explicit finite difference methods for two-dimensional diffusion with an integer condition. Nonlinear Anal. Theory Methods Appl. 48, 637–650 (2002)
Article
MATH
Google Scholar
Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for fractional calculus : a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)
MathSciNet
Article
MATH
Google Scholar
Gorenflo, R., Mainardi, F., Scalas, E., Roberto, M.: Fractional calculus and continuous time finance, III. The diffusion limit, in: Math. Finance, Konstanz, 2000, in: Trends Math, pp. 171–180. Birkhauser, Basel (2001)
Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Book
MATH
Google Scholar
Huang, F., Liu, F.: The fundamental solution of the space-time fractional advection-dispersion. J. Appl. Math. Comput. 18, 339–350 (2005)
MathSciNet
Article
MATH
Google Scholar
Joseph, K.T., Sahoo, M.R.: Vanishing viscosity approach to a system of conservation laws admitting \(\delta ^{{\prime }{\prime }}\)–waves. Commun. pure. Appl. Anal. 12, 2091–2118 (2013)
MathSciNet
MATH
Google Scholar
Lin, Y., Jiang, W.: Approximate solution of the fractional advection-dispersion equation. Comp. Phys. Commun. 181, 557–561 (2010)
MathSciNet
Article
MATH
Google Scholar
Liu, F., Anh, V.V., Turner, I., Zhuang, P.: Time fractional advection-dispersion equation. J. Appl. Math. Comput. 13, 233–245 (2003)
MathSciNet
Article
MATH
Google Scholar
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)
MathSciNet
MATH
Google Scholar
Meerschaaert, M., Benson, D., Scheffler, H.P., Baeumer, B.: Stochastic solution of space-time fractional diffusion equation. Phys. Rev. E 65, 1103–1106 (2002)
MathSciNet
Article
Google Scholar
Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of the anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)
MathSciNet
Article
MATH
Google Scholar
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamic approach. Phys. Rep. 339, 1–77 (2000)
MathSciNet
Article
MATH
Google Scholar
Mechado, J.T.: Discrete time fractional-order controllers. Fract. Calc. Appl. Anal. 4, 47–66 (2001)
MathSciNet
Google Scholar
Miller, K., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
MATH
Google Scholar
Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space-time fractional advection-dispersion equation. Comp. Phys. Commun. 182, 1134–1144 (2011)
MathSciNet
Article
MATH
Google Scholar
Pandey, R.K., Singh, O.P., Baranwal, V.K., Tripathi, M.P.: An analytic solution for the space-time fractional advection-dispersion equation using optimal homotopy asymptotic method. Comp. Phys. Commun. 183, 2098–2106 (2012)
MathSciNet
Article
MATH
Google Scholar
Panov, E.Y., Shelkovich, V.M.: \(\delta ^{{\prime }}\)-shock waves as a new type of solutions to systems of conservation laws. Electron. J. Diff. Equ. 28(1), 1–12 (2015)
Google Scholar
Riemus, P., Pohll, G., Mihevc, T., Chapman, J., Haga, M., Lyles, B., Kosinski, S., Niswonger, R., Sanders, P.: Testing and parameterizing a conceptual for solute transport in fractured granite using multiple tracers in a forced-gradient test. Water Resour. Res. 39, 1356–1370 (2003)
Google Scholar
Roberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high frequency financial data: an empirical study. Phys, A 314, 749–755 (2002)
Article
MATH
Google Scholar
Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B. 27, 273–275 (2002)
MathSciNet
Google Scholar
Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B., Wheatcraft, S.W.: Eulerian derivation of the fractional-dispersion equation. J. Contam. Hydrol. 48, 69–88 (2001)
Article
Google Scholar
Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Multiscaling fractional advection-dispersion equation and their solutions. Water Resour. Res. 39, 1022–1032 (2003)
Google Scholar
El-Sayed, A.M.A., Behiry, S.H., Raslan, W.E.: Adomian’s decomposition method for solving an intermediate advection-dispersion equation. Comput. Math. Appl. 59, 1759–1765 (2010)
MathSciNet
Article
MATH
Google Scholar
Singh, H., Sahoo, M.R., Singh, O.P.: Weak asymptotic solution to a non-strictly system of conservation laws. Electron. J. Diff. Equ. 1, 1–11 (2015)
MathSciNet
MATH
Google Scholar
West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)
Book
Google Scholar
Zaslavsky, G.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)
MATH
Google Scholar