Skip to main content
Log in

Non-similarity Solution of Micropolar Fluid Flow over a Truncated Cone with Soret and Viscous Dissipation Effects Using Spectral Quasilinearization Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is an investigation of viscous dissipation and Soret effects on laminar natural convection flow over a truncated cone immersed in a micropolar fluid with convective boundary condition. For this complex fluid flow problem, the similarity solution does not exist and hence the non-similarity transformations are used to convert the governing fluid flow equations along with associated boundary conditions into a set of non-dimensional form. Due to several advantages of spectral methods over the finite difference and finite element methods, the spectral quasi-linearization method is employed to solve the system of non-similar, coupled, partial differential equations. The numerical results point out that, in the presence and absence of Soret number, the Nusselt number, wall couple stress and Sherwood number decrease, but the temperature, concentration and skin friction increase with an increase of coupling parameter. As the Boit number enhances, the skin friction, Nusselt number and Sherwood number enhance but the wall couple stress reduces in the presence of viscous dissipation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ariman, T., Turk, M.A., Sylvester, N.D.: Microcontinuum fluid mechanics—a review. Int. J. Eng. Sci. 11(8), 905–930 (1973)

    Article  MATH  Google Scholar 

  2. Ariman, T., Turk, M.A., Sylvester, N.D.: Applications of microcontinuum fluid mechanics. Int. J. Eng. Sci. 12(4), 273–293 (1974)

    Article  MATH  Google Scholar 

  3. Ahmadi, G.: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci. 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  4. Awad, F., Sibanda, P.: Dufour and Soret effects on heat and mass transfer in a micropolar fluid in a horizontal channel. WSEAS Trans. Heat Mass Transf. 5, 165–177 (2010)

    Google Scholar 

  5. Ahmad, K., Ishak, A., Nazar, R.: Micropolar fluid flow and heat transfer over a nonlinearly stretching plate with viscous dissipation. Math. Probl. Eng. 2013, 1–5 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Bellman, R.E., Kalaba, R.E.: Quasilinearisation and Non-linear Boundary-Value Problems. Elsevier, New York (1965)

    MATH  Google Scholar 

  7. Cowin, S.C.: Polar fluids. Phys. Fluids 11, 1919–1927 (1968)

    Article  MATH  Google Scholar 

  8. Chamkha, A.J.: Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Transf. Part A 39, 511–530 (2001)

    Article  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods Fundamentals in Single Domains. Springer, New York (2006)

    MATH  Google Scholar 

  10. Cheng, C.Y.: Natural convection of a micropolar fluid from a vertical truncated cone with power-law variation in temperature. Int. Commun. Heat Mass Transf. 35, 39–46 (2008)

    Article  Google Scholar 

  11. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  12. El-Amin, M.F., Mohammadein, A.A.: Effects of viscous dissipation and Joule heating on magnetohydrodynamic Hiemenz flow of a micropolar fluid. Heat Transf. Eng. 26(6), 75–81 (2005)

    Article  Google Scholar 

  13. Eremeyev, V., Lebedev, L., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  14. Gebhart, B.: Effect of viscous dissipation in natural convection. J. Fluid Mech. 14, 225–235 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hitoshi, K., Akira, N., Ohsawa, S., Yamada, H.: Theoretical and experimental study of free convection from a vertical frustum of a cone of a finite length. Int. J. Heat Mass Transf. 28(5), 969–976 (1985)

    Article  Google Scholar 

  16. Haque, M.Z., Alam, M.M., Ferdows, M., Postelnicu, A.: Micropolar fluid behaviors on steady MHD free convection and mass transfer flow with constant heat and mass fluxes, Joule heating and viscous dissipation. J. King Saud Univ. Eng. Sci. 24, 71–84 (2012)

    Google Scholar 

  17. Lukaszewicz, G.: Micropolar Fluids—Theory and Applications. Birkhauser, Basel (1999)

    Book  MATH  Google Scholar 

  18. Mansour, M.A., Mohamed, R.A., Abd-Elaziz, M.M., Sameh, E.A.: Thermal stratication and suction/injection effects on owand heat transfer of micropolar uid due to stretching cylinder. Int. J. Numer. Meth. Biomed. Eng. 27, 1951–1963 (2011)

    Article  MATH  Google Scholar 

  19. Makinde, O.D., Zimbab, K., Beg, O.A.: Numerical study of chemically-reacting hydromagnetic boundary layer flow with Soret/Dufour effects and a convective surface boundary condition. Int. J. Therm. Environ. Eng. 4(1), 89–98 (2012)

    Article  Google Scholar 

  20. Motsa, S.S.: A new spectral local linearization method for nonlinear boundary layer flow problems. J. Appl. Math. 2013, 1–15 (2013)

    MathSciNet  Google Scholar 

  21. Motsa, S.S., Sibanda, P., Ngnotchouye, J.M., Marewo, G.T.: A spectral relaxation approach for unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. Adv. Math. Phys. 2014, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Mutlag, A.A., Uddin, M.J., Ismail, A.I.M.: Scaling transformation for free convection flow of a micropolar fluid along a moving vertical plate in a porous medium with velocity and thermal slip boundary conditions. Sains Malays. 43(8), 1249–1257 (2014)

    Google Scholar 

  23. Na, T.Y., Chiou, J.P.: Laminar natural convection over a frustum of a cone. Appl. Sci. Res. 35, 409–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Postelnicu, A.: Free convection about a vertical frustum of a cone in a micropolar fluid. Int. J. Eng. Sci. 44, 672–682 (2006)

    Article  MATH  Google Scholar 

  25. Postelnicu, A.: Free convection from a truncated cone subject to constant wall heat flux in a micropolar fluid. Meccanica 47, 1349–1357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rashidi, M.M., Keimanesh, M., Bg, O.A., Hung, T.K.: Magnetohydrodynamic biorheological transport phenomena in a porous medium: a simulation of magnetic blood flow control and filtration. Int. J. Numer. Methods Biomed. Eng. 27, 805–821 (2011)

    Article  MATH  Google Scholar 

  27. Ramreddy, Ch., Pradeepa, T., Srinivasacharya, D.: Similarity solution for free convection flow of a micropolar fluid under convective boundary condition via lie scaling group transformations. Adv. High Energy Phys. 2015, 1–16 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Singh, P., Radhakrishnan, V., Narayan, K.A.: Non-similar solutions of free convection flow over a vertical frustum of a cone for constant wall temperature. Ing. Arch. 59, 382–389 (1989)

    Article  MATH  Google Scholar 

  29. Srinivasacharya, D., Ramreddy, Ch.: Natural convection heat and mass transfer in a micropolar fluid with thermal and mass stratification. Int. J. Comput. Methods Eng. Sci. Mech. 14, 401–413 (2013)

    Article  MathSciNet  Google Scholar 

  30. Srinivasacharya, D., Upendar, M.: Free convection in MHD micropolar fluid with Soret and Dufour effects. Int. J. Appl. Mathods Mech. 9(5), 92–112 (2013)

    MATH  Google Scholar 

  31. Srinivasacharya, D., Motsa, S.S., Surender, O.: Numerical study of free convection in a doubly stratified non-darcy porous medium using spectral quasilinearization method. Int. J. Nonlinear Sci. Numer. Simul. 16, 173–183 (2015)

    Article  MathSciNet  Google Scholar 

  32. Yih, K.A.: Effect of radiation on natural convection about a truncated cone. Int. J. Heat Mass Transf. 42, 4299–4305 (1999)

    Article  MATH  Google Scholar 

  33. Yacob, N.A., Ishak, A.: Stagnation point flow towards a stretching/shrinking sheet in a micropolar fluid with a convective surface boundary condition. Can. J. Chem. Eng. 90, 621–626 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. RamReddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RamReddy, C., Pradeepa, T. Non-similarity Solution of Micropolar Fluid Flow over a Truncated Cone with Soret and Viscous Dissipation Effects Using Spectral Quasilinearization Method. Int. J. Appl. Comput. Math 3, 1763–1777 (2017). https://doi.org/10.1007/s40819-016-0227-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0227-y

Keywords

Navigation