Skip to main content

Adomian Decomposition Sumudu Transform Method for Convective Fin with Temperature-Dependent Internal Heat Generation and Thermal Conductivity of Fractional Order Energy Balance Equation

Abstract

In this study, Adomian Decomposition Sumudu Transform Method (ADSTM) is used to solve the fractional order energy balance equation to find the temperature distribution and the fin efficiency in a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. The concept behind the use of ADSTM is to derive a solution of the fractional order energy balance equation. Here, we studied the variation of temperature distribution with internal heat generation for different values of embedding parameters and compared the obtained results with the results obtained through Differential Transformation Method (Ghasemi et al. in Case Stud Therm Eng 4:1–8, 2014) as well as with numerical results to check the accuracy of the method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adomian, G.: Solving Frontier Problems in Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1988)

    Google Scholar 

  2. Asiru, M.A.: Further properties of the Sumudu transform and its applications. Int. J. Math. Educ. Sci. Technol. 3(3), 441–449 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  3. Aziz, A., Bouaziz, M.N.: A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers. Manag. 5(2), 2876–2882 (2011)

    Article  Google Scholar 

  4. Belgacem, F., Karaballi, A.: Sumudu transform fundamental properties investigations and applications. J. Appl. Math. Stoch. Anal. (2006). doi:10.1155/JAMSA/2006/91083

  5. Ganji, D.D., Ganji, Z.Z., Ganji, H.D.: Determination of temperature distribution for annual fins with temperature-dependent thermal conductivity by HPM. Therm. Sci. 15, 111–115 (2011)

    Article  Google Scholar 

  6. Ghasemi, S.E., Hatami, M., Ganji, D.D.: Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation. Case Stud. Therm. Eng. 4, 1–8 (2014)

    Article  Google Scholar 

  7. Gupta, V.G., Bhavna, S., Kilicman, A.: A note on fractional Sumudu transform. J. Appl. Math. (2010). doi:10.1155/2010/154189

  8. Eltayeb, H., Kilicman, A.: Application of Sumudu decomposition method to solve nonlinear system of partial differential equations. Abstr. Appl. Anal. (2012). doi:10.1155/2012/412948

  9. Eltayeb, H., Kilicman, A., Mesloub, S.: Application of Sumudu decomposition method to solve nonlinear system Volterra integro-differential equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/503141

  10. Hatami, M., Ganji, D.D.: Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Convers. Manag. 7(6), 185–193 (2013)

    Article  Google Scholar 

  11. Khani, F., Aziz, A.: Thermal analysis of a longitudinal trapezoidal fin with temperature dependent thermal conductivity and heat transfer coefficient. Commun. Nonlinear Sci. Numer. Simul. 1(5), 590–601 (2010)

    Article  Google Scholar 

  12. Kilicman, A., Eltayeb, H.: On the applications of Laplace and Sumudu transforms. J. Frankl. Inst. 347(5), 848–862 (2010). doi:10.1016/j.jfranklin.2010.03.008

    MathSciNet  Article  MATH  Google Scholar 

  13. Kilicman, A., Eltayeb, H., Atan, K.A.M.: A note on the comparison between Laplace and Sumudu transforms. Bull. Iran. Math. Soc. 37(1), 131–141 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Kilicman, A., Eltayeb, H., Agarwal, R.P.: On Sumudu transform and system of differential equations. Abstr. Appl. Anal. (2010). doi:10.1155/2010/598702

  15. Kilicman, A., Eltayeb, H.: A note on integral transforms and partial differential equations. Appl. Math. Sci. 4(3), 109–118 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Kraus, A.D., Aziz, A., Welty, J.: Extended Surface Heat Transfer. Wiley, New York (2002)

    Google Scholar 

  17. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  18. Minkler, W.S., Rouleau, W.T.: The effects of internal heat generation on heat transfer in thin fins. Nucl. Sci. Eng. 7, 400–406 (1960)

    Google Scholar 

  19. Patel, T., Meher, R.: A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using adomian decomposition Sumudu transform method. Proc. Eng. 127, 751–758 (2015)

    Article  Google Scholar 

  20. Patel, T., Meher, R.: Adomian decomposition Sumudu transform method for solving fully nonlinear fractional order power-law fin-type problems. Int. J. Math. Comput. 2(7), 7–16 (2015)

    MathSciNet  Google Scholar 

  21. Patel, T., Meher, R.: Adomian decomposition sumudu transform method for solving a solid and porous fin with temperature dependent internal heat generation. SpringerPlus 5(489), (2016).doi:10.1186/s40064-016-2106-8

  22. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  23. Saha, R.S., Poddar, B.P., Bera, R.K.: Analytical solution of a dynamic system containing fractional derivative of order one-half by Adomian Decomposition Method. J. Appl. Mech. 7(2), 290–295 (2005)

    Article  MATH  Google Scholar 

  24. Saha, R.S., Bera, R.K.: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl. Math. Comput. 167, 561–571 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Saha, R.S., Bera, R.K.: Analytical solution of a fractional diffusion equation by Adomian decomposition method. Appl. Math. Comput. 175, 1046–1054 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Singh, J., Kumar, D., Kilicman, A.: Homotopy perturbation method for fractional gas dynamics equation using Sumudu transform. Abstr. Appl. Anal. (2013). doi:10.1155/2013/934060

  27. Watugala, G.K.: Sumudu transform a new integral transform to solve differential equations and control engineering problems. Math. Eng. Ind. 6, 319–329 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakanta Meher.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, T., Meher, R. Adomian Decomposition Sumudu Transform Method for Convective Fin with Temperature-Dependent Internal Heat Generation and Thermal Conductivity of Fractional Order Energy Balance Equation. Int. J. Appl. Comput. Math 3, 1879–1895 (2017). https://doi.org/10.1007/s40819-016-0208-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0208-1

Keywords

  • Adomian Decomposition Sumudu Transform Method
  • Convective fin
  • Temperature distribution
  • Fin efficiency
  • Internal heat generation
  • Fractional differential equation