Skip to main content
Log in

EFGM Simulation of Pulsating Doublediffusive Effect on Transpiration Cooling in Nanofluid Filled Wavy Channel

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The heat and mass transfer characteristics of nanofluid in a wavy channel with pulsating inlet flow conditions is investigated numerically. Two phase model of nanofluids incorporating the effects of Brownian motion and thermophoresis is considered. Element free Galerkin method is used to solve the governing equations and to analyze the flow field. Apart from intensifying heat transfer, pulsation also allows high volume fraction of nanoparticles to be considered without fear of sedimentation or abrasion. The simulations are performed for Brownian motion parameter Nb, thermophoresis parameter Nt, nanoparticle volume fraction \(\phi \) and amplitude of inlet velocity \(A_{in}\) while keeping the other parameters under study constant. It is observed that wavy channel also aids in enhancing the heat transfer as there is a development of self sustained oscillatory flow boosting the mixing of fluid between different regions. The obtained results indicate that nanofluids under pulsating flow condition have a good potential in increasing the transpiration cooling performance; thereby helping in the design of supersonic passenger aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A_{wc}\) :

Amplitude of wavy channel

H :

Height of the wavy channel

(UV):

Non-dimensional velocity in (xy) direction

P :

Non-dimensional pressure

Re :

Reynolds number

Pr :

Prandtl number

F :

Non-dimensional nanoparticle concentration

\(\theta \) :

Non-dimensional temperature

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

St :

Strohaul number

L :

Length of cycle

t :

Time

f :

Frequency of pulsation

c :

Specific heat capacity

\(A_{in}\) :

Amplitude of pulsation (non-dimensional)

\(\nu \) :

Kinematic viscosity

\(\beta \) :

Thermal expansion coefficient

\(\alpha \) :

Thermal diffusivity

\(\rho \) :

Fluid density

\(\lambda \) :

Length of wavy channel

\(\tau \) :

Cycle time

\(\xi \) :

Enhancement parameter

\(\phi \) :

Nanoparticle volume fraction

wc:

Wavy channel

in:

Inlet

p:

Pulsating

s:

Steady

h:

Heat

m:

Mass

np:

Nanoparticle

nf:

Nanofluid

bf:

Base fluid

References

  1. Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles. Netsu Bussei 7(4), 227–233 (1993)

    Article  Google Scholar 

  2. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-newtonian flows. ASME 66, 99–105 (1995)

    Google Scholar 

  3. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  4. Sui, Y., Teo, C.J., Lee, P.S.: An experimental study of flow friction and heat transfer in wavy micro channels with rectangular cross section. Int. J. Therm. Sci. 50, 2473–2482 (2011)

    Article  Google Scholar 

  5. Wu, H.Y., Cheng, P.: Friction factor in smooth trapezoidal silicon microchannel with different aspect ratios. Int. J. Heat Mass Transf. 46, 2519–2525 (2003)

    Article  Google Scholar 

  6. Naphon, P.: Effect of corrugated plates in an in-phase arrangement on the heat transfer and flow developments. Int. J. Heat Mass Transf. 51, 3963–3971 (2008)

    Article  MATH  Google Scholar 

  7. Ramgadia, A.G., Saha, A.K.: Numerical study of fully developed flow and heat transfer in awavy passage. Int. J. Therm. Sci. 67, 152–166 (2013)

    Article  Google Scholar 

  8. Mohammed, H.A., Gunnasegaran, P., Shuais, N.H.: Numerical simulation of heat transfer enhancement in Wavy microchannels heat sink. Int. Commun. Heat Mass Transf. 38, 63–68 (2011)

    Article  Google Scholar 

  9. Valinataj-Bahnemiri, P., Ramiara, A., Manavia, S.A., Mozaffarib, A.: Heat transfer optimization of two phase modeling of nanofluid in a sinusoidal wavy channel using Artificial Bee Colony technique. Eng. Sci. Technol. Int. J. 18, 727–737 (2015)

    Article  Google Scholar 

  10. Yadav, D., Kim, M.C.: Linear and non-linear analyses of Soret-driven buoyancy convection in a vertically orientated Hele–Shaw cell with nanoparticles suspension. Comput. Fluids 117, 139–148 (2015)

    Article  MathSciNet  Google Scholar 

  11. Yadav, D., Lee, D., Cho, H.H., Lee, J.: The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: a revised model. J Porous Media 19, 31–46 (2016)

    Article  Google Scholar 

  12. Jafari, M., Farhadi, M., Sedighi, K.: Pulsating flow effects on convection heat transfer in a corrugated channel: a LBM approach. Int. Commun. Heat Mass Transf. 45, 146–154 (2013)

    Article  Google Scholar 

  13. Heidary, H., Kermani, M.J.: Effect of nano-particles on forced convection in sinusoidal wall channel. Int. Commun. Heat Mass Transf. 37, 1520–1527 (2010)

    Article  Google Scholar 

  14. Nishumura, T., Oka, N., Yoshinaka, Y., Kunitsugu, K.: Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow. Int. J. Heat Mass Transf. 43, 2365–2374 (2000)

    Article  Google Scholar 

  15. Nandi, T.K., Chattopadhyay, H.: Numerical investigations of simultaneously developing flow in wavy microchannels under pulsating inlet flow condition. Int. Commun. Heat Mass Transf. 47, 27–31 (2013)

    Article  Google Scholar 

  16. Jin, D.X., Lee, Y.P., Lee, D.Y.: Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel. Int. J. Heat Mass Transf. 50, 3062–3071 (2007)

    Article  MATH  Google Scholar 

  17. Selimefendigil, F., Oztop, H.F.: Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int. J. Heat Mass Transf. 69, 54–65 (2014)

    Article  Google Scholar 

  18. Ahmed, M.A., Yusoff, M.Z., Shuaib, N.H.: Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid. Int. Commun. Heat Mass Transf. 42, 69–74 (2013)

    Article  Google Scholar 

  19. Yang, Y.T., Wang, Y.H., Tseng, P.K.: Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids. Int. Commun. Heat Mass Transf. 51, 9–17 (2014)

    Article  Google Scholar 

  20. Qu, J., Wu, H.Y., Cheng, P.: Thermal performance of an oscillating heat pipe with \(Al_{2}O_{3}\)-water nanofluids. Int. Commun. Heat Mass Transf. 37, 111–115 (2010)

    Article  Google Scholar 

  21. Rahgoshay, M., Ranjbar, A.A., Ramiar, A.: Laminar pulsating flow of nanofluids in a circular tube with isothermal wall. Int. Commun. Heat Mass Transf. 39, 463–469 (2012)

    Article  Google Scholar 

  22. Liu, G.R.: Mesh Free Methods Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  23. Liu, G.R., Trung, N.T.: Smoothed Finite Element Methods. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  24. Zhang, L., Ouyang, J., Zhang, X.H.: On a two-level element-free Galerkin method for incompressible fluid flow. Applied Numerical Mathematics 59(8), 1894–1904 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh, S., Bhargava, R.: Numerical study of natural convection within a wavy enclosure using Meshfree approach: effect of corner heating. Sci. World J. Article ID . 842401 (2014)

  26. Johnson, R.W.: The Handbook of Fluid Dynamics, Second edition edn. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  27. Akdag, U., Akcay, S., Demiral, D.: Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. International Communication sin HEat and Mass Transfer 59, 17–23 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Rangoli Goyal would like to thank Department of Science and Technology, Government of India, for its financial support through the award of a research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangoli Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, R., Bhargava, R. EFGM Simulation of Pulsating Doublediffusive Effect on Transpiration Cooling in Nanofluid Filled Wavy Channel. Int. J. Appl. Comput. Math 3, 1847–1860 (2017). https://doi.org/10.1007/s40819-016-0198-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0198-z

Keywords

Navigation