Skip to main content

Two-Fluid Model for Blood Flow Through a Tapered Arterial Stenosis: Effect of Non-zero Couple Stress Boundary Condition at the Interface

Abstract

The present paper concerns a mathematical model for steady flow of blood through tapered stenosed arteries with peripheral plasma layer near the wall. The model consists of a core region of suspension of all the erythrocytes assumed to be a couple stress fluid and a peripheral layer of plasma as a Newtonian fluid. A non-zero couple stress boundary condition at the interface is introduced. The values of velocity, wall shear stress and the flow resistance with respect to the non-zero couple stress condition at the interface for normal blood and diseased [polycythemia, plasmal cell dyscrasias and HBSS (sickle cell)] blood are computed. It is observed that the introduction of the non-zero couple stress boundary condition at the interface helps to increase the velocity and significantly reduces the resistive impedance which, in turn, improves or normalizes the blood flow in diseased state. This information of blood flow could be useful for the development of new diagnosis tools and medicines for many diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Chaturani, P., Ponnalagarsamy, R.: Pulsatile flow of Casson’s fluid through stenosed arteries with applications to blood flow. Biorheology 23, 499–511 (1986)

    Google Scholar 

  2. 2.

    Young, D.F.: Effects of a time-dependent stenosis on flow through a tube. J. Eng. Ind. Trans. AMSE 90, 248–254 (1968)

    Article  Google Scholar 

  3. 3.

    Shukla, J.B., Parihar, R.S., Gupta, S.P.: Biorhelogical aspects of blood flow through artery with mild stenosis: effects of peripheral layer. Biorheology 17, 403–410 (1980a)

    MATH  Google Scholar 

  4. 4.

    Ponalagusamy, R.: Mathematical analysis on effect of non-Newtonian behavior of blood on optimal geometry of microvascular bifurcation system. J. Frankl. Inst. 349, 2861–2874 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Chaturani, P., Ponnalagusamy, R.: A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology 22, 521–531 (1985)

    Google Scholar 

  6. 6.

    Deshpamde, M.D., Giddens, D.P., Mabon, R.F.: Steady laminar flow through modeled vascular stenosis. J. Biomech. 9, 65–174 (1979)

    Google Scholar 

  7. 7.

    Forrester, J.H., Young, D.F.: Flow through a converging–diverging tube and its implications in occlusive vascular diseases. J. Biomech. 3, 297–305 (1970)

    Article  Google Scholar 

  8. 8.

    Macdonald, D.A.: On steady flow through modeled vascular stenosis. J. Biomech. 12, 13–20 (1979)

    Article  Google Scholar 

  9. 9.

    Shukla, J.B., Parihar, R.S., Gupta, S.P.: Effects of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull. Math. Biol. 42, 797–805 (1980b)

    Article  MATH  Google Scholar 

  10. 10.

    Ponalagusamy, R.: Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J. Appl. Sci. 7, 1071–1077 (2007)

    Article  Google Scholar 

  11. 11.

    Ponalagusamy, R., Tamil Selvi, R.: A study on two-fluid model (Casson–Newtonian) for blood flow through an arterial stenosis: axially variable slip velocity at the wall. J. Frankl. Inst. 348, 2308–2321 (2011)

    Article  MATH  Google Scholar 

  12. 12.

    Ponalagusamy, R., Tamil Selvi, R.: Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. Meccanica 48, 2427–2438 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Stokes, V.K.: Couple stresses in fluids. Phys. Fluids 9, 1710–1717 (1966)

    Article  Google Scholar 

  14. 14.

    Valanis, K.C., Sun, C.T.: Poiseuille flow of a fluid with couple stress with application to blood flow. Biorheology 6, 85–95 (1969)

    Google Scholar 

  15. 15.

    Bugliarello, G., Sevilla, J.: Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorhelogy l7, 85–107 (1970)

    Google Scholar 

  16. 16.

    Bugliarello, G., Hayden, J.W.: Detailed characteristics of the flow of blood in vitro. Trans. Soc. Rheol. 7, 209–230 (1963)

    Article  Google Scholar 

  17. 17.

    Chaturani, P., Kaloni, P.N.: Two -layered poiseuille flow model for blood flow through arteries of small diameter and arterioles. Biorheology 13, 243–250 (1976)

    Google Scholar 

  18. 18.

    Chaturani, P., Ponalagusamy, R.: A two-layered model for blood flow through stenosed arteries. In: Procedings of \(11^{{\rm th}}\) National Conference on Fluid Mechanics and Fluid Power, B.H.E.L (R&D), Hydrabad, India, pp. 16–22 (1982)

  19. 19.

    Ponalagusamy, R.: Blood flow through stenosed tube. Ph.D. thesis, IIT, Bombay, India (1986)

  20. 20.

    Srivastava, V.P., Srivastava, R.: Particulate suspension blood flow through a narrow catheterized artery. Comput. Math. Appl. 58, 227–238 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Srivastava, V.P., Rastogi, R., Vishnoi, R.: A two-layered suspension blood flow through an overlapping stenosis. Comput. Math. Appl. 60, 432–441 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Srivastava, V.P., Rastogi, R.: Blood flow through a stenosed catheterized artery: effects of hematocrit and stenosis shape. Comput. Math. Appl. 59, 1377–1385 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Srivastava, V.P., Saxena, M.: Two-layered model of Casson fluid flow through stenotic blood vessels: applications to cardiovascular system. J. Biomech. 27, 921–928 (1994)

    Article  Google Scholar 

  24. 24.

    Rathod, V.P., Tanveer, S., Rani, I.S., Rajput, G.G.: Steady blood flow with periodic body acceleration and magnetic field. Acta Ciencia Indica XXXI M, 41–46 (2005)

    MATH  Google Scholar 

  25. 25.

    Mathur, P., Jain, S.: Pulsatile flow of blood through a stenosed tube: effect of periodic body acceleration and a magnetic field. J. Biorheol. 25, 71–77 (2011)

    Article  Google Scholar 

  26. 26.

    Sinha, P., Singh, C.: Effects of couple stresses on the blood flow through an artery with mild stenosis. Biorheology 21, 303–310 (1984)

    Google Scholar 

  27. 27.

    Pralhad, R.N., Schultz, D.H.: Modeling of arterial stenosis and its applications to blood diseases. Math. Biosci. 190, 203–220 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Srinivasacharya, D., Srikanth, D.: Effect of couple stresses on the pulsatile flow through a constricted annulus. C. R. Mecanique 336, 820–827 (2008)

    Article  MATH  Google Scholar 

  29. 29.

    Srivastava, V.P.: Flow of a couple stress fluid representing blood through stenotic vessels with a peripheral layer. Indian J. Pure Appl. Math. 34, 1727–1740 (2003)

    MATH  Google Scholar 

  30. 30.

    Farooq, M., Rahim, M.T., Islam, S., Siddiqui, A.M.: Steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined plates with variable viscosity. J. Assoc. Arab Univ. Basic Appl. Sci. 14, 9–18 (2013)

    Google Scholar 

  31. 31.

    Chippa, S.P., Sarangi, M.: Elastohydrodynamically lubricated finite line contact with couple stress fluids. Tribol. Int. 67, 11–20 (2013)

    Article  Google Scholar 

  32. 32.

    Devakar, M., Sreenivasu, D., Shankar, B.: Analytical solutions of couple stress fluid flows with slip boundary conditions. Alex. Eng. J. 53, 723–730 (2014)

    Article  MATH  Google Scholar 

  33. 33.

    Srikanth, D., Ramana Reddy, J.V., Jain, Shubha, Kale, Anup: Unsteady polar fluid model of blood flow through tapered \(\omega \) x-shape stenosed artery: effects of catheter and velocity slip. Ain Shams Eng. J. 6, 1093–1104 (2015)

    Article  Google Scholar 

  34. 34.

    Chaturani, P., Upadhya, V.S., Mahajan, S.P.: A two-fluid model for blood flow through small diameter tubes with non-zero couple stress boundary condition at interface. Biorheology 18, 245–253 (1981)

    Google Scholar 

  35. 35.

    Chaturani, P., Mahajan, S.P.: Poiseuille flow of micropolar fluid with non-zero couple stress at boundary with applications to blood flow. Biorheology 19, 507–518 (1982)

    Google Scholar 

  36. 36.

    Ponalagusamy,R.: Pulsatile flow of Herschel–Bulkley fluid in tapered blood vessels. In: Proceedings of the 2013 International Conference on Scientific Computing (CSC 2013), WorldComp’13, Lasvegas, USA, July 22–25, 2013, pp. 67–73. ISBN:1-60132-238-0 (2013)

  37. 37.

    Mekheimer, Khs, EI Kot, M.A.: The micropolar fluid model for blood flow through a tapered artery with a stenosis. Acta Mech. Sin. 24, 637–644 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Merchut, M.P., Gupta, S.R., Naheedy, M.H.: The role of retinal occlusion and carotid artery stenosis. Stroke 19, 1239–1242 (1988)

    Article  Google Scholar 

  39. 39.

    Palmer, A.H., Defeyter, I.R., Vandenbogaerde, J.F.: Renal arterial stenosis as a cause of high output cardiac failure. Int. J. Cardiol. 22, 404–406 (1989)

    Article  Google Scholar 

  40. 40.

    Chien, S.: Hemorheology in clinical medicine. Clin. Hemorheol. 2, 137–143 (1982)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Ponalagusamy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponalagusamy, R. Two-Fluid Model for Blood Flow Through a Tapered Arterial Stenosis: Effect of Non-zero Couple Stress Boundary Condition at the Interface. Int. J. Appl. Comput. Math 3, 807–824 (2017). https://doi.org/10.1007/s40819-016-0133-3

Download citation

Keywords

  • A non-zero couple stress boundary condition at the interface
  • Couple stress fluid
  • Newtonian fluid
  • Plasma layer thickness
  • Tapered stenosed artery
  • Axially asymmetric stenosis