Skip to main content
Log in

Quadratic Interpolation Technique to Minimize Univariable Fuzzy Functions

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a quadratic interpolation technique is proposed to minimize a univariable fuzzy-number-valued function. The fuzzy max-ordering relation of fuzzy numbers is used for optimal solution concept. The Hausdorff distance and Hukuhara difference between two fuzzy numbers, and the Hukuhara differentiability of fuzzy functions, are employed in order to derive the quadratic interpolation method. Convergence rates of the proposed two points and three points quadratic interpolation techniques are also analyzed. A numerical example is included to illustrate the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chalco-Cano, Y., Silva, G.N., Rufian-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)

    Article  MathSciNet  Google Scholar 

  3. Lai, Y.-J., Hwang, C.-L.: Fuzzy Mathematical Programming: Methods and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 394. Springer, New York (1992)

  4. Lai, Y.-J., Hwang, C.-L.: Fuzzy Multiple Objective Decision Making: Methods and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 404. Springer, New York (1994)

  5. Lodwick, W. A., Kacprzyk, J.: Fuzzy Optimization: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, vol. 254. Physica-Verlag, New York (2010)

  6. Słowínski, R. (ed.): Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Kluwer, Boston (1998)

    MATH  Google Scholar 

  7. Cadenas, J.M., Verdegay, J.L.: Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 8, 231–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, H.-C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Mak. 2, 61–73 (2003)

    Article  MathSciNet  Google Scholar 

  9. Wu, H.-C.: Duality theory in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 345–365 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, H.-C.: Duality theory in fuzzy optimization problems formulated by the Wolfe’s primal and dual pair. Fuzzy Optim. Decis. Mak. 6, 179–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhong, Y., Shi, Y.: Duality in fuzzy multi-criteria and multi-constraint level linear programming: a parametric approach. Fuzzy Sets Syst. 132, 335–346 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, Z.: Duality theory in fuzzy mathematical programming problems with fuzzy coefficients. Comput. Math. Appl. 49, 1709–1730 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghosh, D., Chakraborty, D.: A new method to obtain fuzzy Pareto set of fuzzy multi-criteria optimization problems. Int. J. Intell. Fuzzy Syst. 26, 1223–1234 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Ghosh, D., Chakraborty, D.: A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets Syst. 272, 1–29 (2015)

    Article  MathSciNet  Google Scholar 

  18. Ghosh, D., Chakraborty, D.: Fuzzy ideal cone: a method to obtain complete fuzzy non-dominated set of fuzzy multi-criteria optimization problems with fuzzy parameters. In: Proceedings of IEEE International Conference on Fuzzy Systems 2013, FUZZ IEEE 2013, IEEE Xplore, pp. 1–8

  19. Gong, Z.-T., Li, H.-X.: Saddle point optimality conditions in fuzzy optimization problems. In: Cao, B.-Y., Zhang, C.-Y., Li, T.-F. (eds.) Fuzzy Info. and Engineering, pp. 7–14 . Springer, ASC 54 (2009)

  20. Wu, H.-C.: Saddle point optimality conditions in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 261–273 (2003)

    Article  MathSciNet  Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  22. Andrei, N.: Hybrid conjugate gradient algorithm for unconstrained optimization. J. Optim. Theory Appl. 141, 249–264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zeng, L.C., Schaible, S., Yao, J.C.: Hybrid steepest descent methods for zeros of nonlinear operators with applications to variational inequalities. J. Optim. Theory Appl. 141, 75–91 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156, 867–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hall, K.R., Hull, D.G.: Interpolation in numerical optimization. AIAA J. 13(2), 231–232 (1975)

    Article  Google Scholar 

  26. Wenyu, S., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, New York (2006)

    MATH  Google Scholar 

  27. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  28. Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42(3), 331–365 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramík, J.: Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst. 158, 1873–1881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982)

    Article  MATH  Google Scholar 

  31. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18(1), 31–43 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Banks, H.T., Jacobs, M.Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246–272 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  33. Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91(2), 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory, vol. 251. Springer, New York (2010)

    Book  MATH  Google Scholar 

  35. Wu, C., Song, S., Lee, S.S.: Approximate solutions, existence and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202, 629–644 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151(3), 581–599 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions for the optimization problem with fuzzy-valued objective function. Math. Methods Oper. Res. 66(2), 203–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, H.-C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57, 473–489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, H.-C.: The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optim. Dec. Mak. 8(3), 295–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156(3), 867–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ramík, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lee-Kwang, H., Lee, J.-H.: A method for ranking fuzzy numbers and its application to decision-making. IEEE Trans. Fuzzy Syst. 7(6), 677–685 (1999)

    Article  Google Scholar 

  44. Cheng, C.-H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95, 307–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yager, R.R., Dimitar, F.: On ranking fuzzy numbers using valuations. Int. J. Intel. Syst. 14, 1249–1268 (1999)

    Article  MATH  Google Scholar 

  46. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities. Fuzzy Sets Syst. 118, 375–385 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mitchell, H.B., Schaefer, P.A.: On ordering fuzzy numbers. Int. J. Intel. Syst. 15, 981–993 (2000)

    Article  MATH  Google Scholar 

  48. Sun, H., Wu, J.: A new approach for ranking fuzzy numbers based on fuzzy simulation analysis method. Appl. Math. Comput. 174(1), 755–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Peng, J., Liu, H., Gang, S.: Ranking fuzzy variables in terms of credibility measure. In: Wang, L., Jiao, L., Shi, G., Liu, J. (eds.) Fuzzy Systems Knowledge Discovery, vol. 4223, pp. 217–220. Springer, New York (2006)

  50. Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst. 116, 275–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, Z.-X., Liu, Y.-L., Fan, Z.-P., Feng, B.: Ranking L–R fuzzy number based on deviation degree. Inform. Sci. 179, 2070–2077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, New York (2001)

    Book  Google Scholar 

Download references

Acknowledgments

We are really grateful to the anonymous reviewers and the editors for their constructive comments and valuable suggestions. The first author gratefully acknowledges financial support from the Outstanding Potential for Excellence in Research and Academics Award and from the Research Initiation Grant (BITS/GAU/RIG/53), BITS Pilani, Hyderabad Campus, India. The second author acknowledges the financial support given by the Department of Science and Technology, Government of India (SR/S4/M: 497/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdas Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Chakraborty, D. Quadratic Interpolation Technique to Minimize Univariable Fuzzy Functions. Int. J. Appl. Comput. Math 3, 527–547 (2017). https://doi.org/10.1007/s40819-015-0123-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0123-x

Keywords

Mathematics Subject Classification

Navigation