Advertisement

Quadratic Interpolation Technique to Minimize Univariable Fuzzy Functions

  • Debdas GhoshEmail author
  • Debjani Chakraborty
Original Paper

Abstract

In this paper, a quadratic interpolation technique is proposed to minimize a univariable fuzzy-number-valued function. The fuzzy max-ordering relation of fuzzy numbers is used for optimal solution concept. The Hausdorff distance and Hukuhara difference between two fuzzy numbers, and the Hukuhara differentiability of fuzzy functions, are employed in order to derive the quadratic interpolation method. Convergence rates of the proposed two points and three points quadratic interpolation techniques are also analyzed. A numerical example is included to illustrate the proposed techniques.

Keywords

Quadratic interpolation method Hukuhara differentiability  Fuzzy optimization 

Mathematics Subject Classification

90C70 90C29 

Notes

Acknowledgments

We are really grateful to the anonymous reviewers and the editors for their constructive comments and valuable suggestions. The first author gratefully acknowledges financial support from the Outstanding Potential for Excellence in Research and Academics Award and from the Research Initiation Grant (BITS/GAU/RIG/53), BITS Pilani, Hyderabad Campus, India. The second author acknowledges the financial support given by the Department of Science and Technology, Government of India (SR/S4/M: 497/07).

References

  1. 1.
    Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, B141–B164 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chalco-Cano, Y., Silva, G.N., Rufian-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lai, Y.-J., Hwang, C.-L.: Fuzzy Mathematical Programming: Methods and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 394. Springer, New York (1992)Google Scholar
  4. 4.
    Lai, Y.-J., Hwang, C.-L.: Fuzzy Multiple Objective Decision Making: Methods and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 404. Springer, New York (1994)Google Scholar
  5. 5.
    Lodwick, W. A., Kacprzyk, J.: Fuzzy Optimization: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, vol. 254. Physica-Verlag, New York (2010)Google Scholar
  6. 6.
    Słowínski, R. (ed.): Fuzzy Sets in Decision Analysis, Operations Research and Statistics. Kluwer, Boston (1998)zbMATHGoogle Scholar
  7. 7.
    Cadenas, J.M., Verdegay, J.L.: Towards a new strategy for solving fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 8, 231–244 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wu, H.-C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Mak. 2, 61–73 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wu, H.-C.: Duality theory in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 345–365 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wu, H.-C.: Duality theory in fuzzy optimization problems formulated by the Wolfe’s primal and dual pair. Fuzzy Optim. Decis. Mak. 6, 179–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhong, Y., Shi, Y.: Duality in fuzzy multi-criteria and multi-constraint level linear programming: a parametric approach. Fuzzy Sets Syst. 132, 335–346 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cheng, Z.: Duality theory in fuzzy mathematical programming problems with fuzzy coefficients. Comput. Math. Appl. 49, 1709–1730 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry I. Fuzzy Sets Syst. 209, 66–83 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chakraborty, D., Ghosh, D.: Analytical fuzzy plane geometry II. Fuzzy Sets Syst. 243, 84–109 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ghosh, D., Chakraborty, D.: Analytical fuzzy plane geometry III. Fuzzy Sets Syst. 283, 83–107 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ghosh, D., Chakraborty, D.: A new method to obtain fuzzy Pareto set of fuzzy multi-criteria optimization problems. Int. J. Intell. Fuzzy Syst. 26, 1223–1234 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ghosh, D., Chakraborty, D.: A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets Syst. 272, 1–29 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ghosh, D., Chakraborty, D.: Fuzzy ideal cone: a method to obtain complete fuzzy non-dominated set of fuzzy multi-criteria optimization problems with fuzzy parameters. In: Proceedings of IEEE International Conference on Fuzzy Systems 2013, FUZZ IEEE 2013, IEEE Xplore, pp. 1–8Google Scholar
  19. 19.
    Gong, Z.-T., Li, H.-X.: Saddle point optimality conditions in fuzzy optimization problems. In: Cao, B.-Y., Zhang, C.-Y., Li, T.-F. (eds.) Fuzzy Info. and Engineering, pp. 7–14 . Springer, ASC 54 (2009)Google Scholar
  20. 20.
    Wu, H.-C.: Saddle point optimality conditions in fuzzy optimization problems. Fuzzy Optim. Decis. Mak. 3, 261–273 (2003)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  22. 22.
    Andrei, N.: Hybrid conjugate gradient algorithm for unconstrained optimization. J. Optim. Theory Appl. 141, 249–264 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zeng, L.C., Schaible, S., Yao, J.C.: Hybrid steepest descent methods for zeros of nonlinear operators with applications to variational inequalities. J. Optim. Theory Appl. 141, 75–91 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156, 867–881 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hall, K.R., Hull, D.G.: Interpolation in numerical optimization. AIAA J. 13(2), 231–232 (1975)CrossRefGoogle Scholar
  26. 26.
    Wenyu, S., Yuan, Y.-X.: Optimization Theory and Methods: Nonlinear Programming, vol. 1. Springer, New York (2006)zbMATHGoogle Scholar
  27. 27.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2006)CrossRefzbMATHGoogle Scholar
  28. 28.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 42(3), 331–365 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ramík, J.: Optimal solutions in optimization problem with objective function depending on fuzzy parameters. Fuzzy Sets Syst. 158, 1873–1881 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Dubois, D., Prade, H.: Towards fuzzy differential calculus part 3: differentiation. Fuzzy Sets Syst. 8(3), 225–233 (1982)CrossRefzbMATHGoogle Scholar
  31. 31.
    Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 18(1), 31–43 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Banks, H.T., Jacobs, M.Q.: A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246–272 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Puri, M.L., Ralescu, D.A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91(2), 552–558 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Anastassiou, G.A.: Fuzzy Mathematics: Approximation Theory, vol. 251. Springer, New York (2010)CrossRefzbMATHGoogle Scholar
  35. 35.
    Wu, C., Song, S., Lee, S.S.: Approximate solutions, existence and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202, 629–644 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151(3), 581–599 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wu, H.-C.: The Karush–Kuhn–Tucker optimality conditions for the optimization problem with fuzzy-valued objective function. Math. Methods Oper. Res. 66(2), 203–224 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wu, H.-C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57, 473–489 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wu, H.-C.: The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions. Fuzzy Optim. Dec. Mak. 8(3), 295–321 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pirzada, U.M., Pathak, V.D.: Newton method for solving the multi-variable fuzzy optimization problem. J. Optim. Theory Appl. 156(3), 867–881 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Ramík, J., Rimanek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Lee-Kwang, H., Lee, J.-H.: A method for ranking fuzzy numbers and its application to decision-making. IEEE Trans. Fuzzy Syst. 7(6), 677–685 (1999)CrossRefGoogle Scholar
  44. 44.
    Cheng, C.-H.: A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets Syst. 95, 307–317 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Yager, R.R., Dimitar, F.: On ranking fuzzy numbers using valuations. Int. J. Intel. Syst. 14, 1249–1268 (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities. Fuzzy Sets Syst. 118, 375–385 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Mitchell, H.B., Schaefer, P.A.: On ordering fuzzy numbers. Int. J. Intel. Syst. 15, 981–993 (2000)CrossRefzbMATHGoogle Scholar
  48. 48.
    Sun, H., Wu, J.: A new approach for ranking fuzzy numbers based on fuzzy simulation analysis method. Appl. Math. Comput. 174(1), 755–767 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Peng, J., Liu, H., Gang, S.: Ranking fuzzy variables in terms of credibility measure. In: Wang, L., Jiao, L., Shi, G., Liu, J. (eds.) Fuzzy Systems Knowledge Discovery, vol. 4223, pp. 217–220. Springer, New York (2006)Google Scholar
  50. 50.
    Yao, J.S., Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst. 116, 275–288 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Wang, Z.-X., Liu, Y.-L., Fan, Z.-P., Feng, B.: Ranking L–R fuzzy number based on deviation degree. Inform. Sci. 179, 2070–2077 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, New York (2001)CrossRefGoogle Scholar

Copyright information

© Springer India Pvt. Ltd. 2015

Authors and Affiliations

  1. 1.Birla Institute of Science and Technology, PilaniSecunderabadIndia
  2. 2.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations