Skip to main content

The Canonical Foliation On Null Hypersurfaces in Low Regularity

Abstract

Let \({{\mathcal {H}}}\) denote the future outgoing null hypersurface emanating from a spacelike 2-sphere S in a vacuum spacetime \(({{\mathcal {M}}},\textbf{g})\). In this paper we study the so-called canonical foliation on \({{\mathcal {H}}}\) introduced in [13, 22] and show that the corresponding geometry is controlled locally only in terms of the initial geometry on S and the \(L^2\) curvature flux through \({{\mathcal {H}}}\). In particular, we show that the ingoing and outgoing null expansions \({\textrm{tr}}\chi \) and \({\textrm{tr}}{{{\underline{\chi }}}}\) are both locally uniformly bounded. The proof of our estimates relies on a generalisation of the methods of [15,16,17] and [1, 2, 26, 32] where the geodesic foliation on null hypersurfaces \({{\mathcal {H}}}\) is studied. The results of this paper, while of independent interest, are essential for the proof of the spacelike-characteristic bounded \(L^2\) curvature theorem [12].

This is a preview of subscription content, access via your institution.

Notes

  1. The (portion of the) null hypersurface \({{\mathcal {H}}}\) is regular if there exists a smooth non-vanishing null geodesic vector field L with integral curves threading (the portion of) \({{\mathcal {H}}}\).

  2. Throughout this section, we call “geodesic quantities” arbitrary contractions of arbitrary numbers of derivatives of null connection coefficients and null curvature components associated to the geodesic foliation.

  3. The uniqueness of s follows from re-running the contraction argument of the proof of Theorem 6.2 in Section 6.2. Details are left to the reader.

References

  1. Alexakis, S., Shao, A.: Bounds on the Bondi energy by a flux of curvature. J. Eur. Math. Soc. (JEMS) 18(9), 2045–2106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexakis, S., Shao, A.: On the geometry of null cones to infinity under curvature flux bounds. Class. Quantum Gravity 31(19), 62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartnik, R.: Existence of maximal surfaces in asymptotically flat spacetimes. Commun. Math. Phys. 94(2), 155–175 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Christodoulou, D.: The formation of black holes and singularities in spherically symmetric gravitational collapse. Commun. Pure Appl. Math. 44(3), 339–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46, 1131–1220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics (2009)

  8. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41. Princeton University Press, Princeton, NJ, (1993). x+514 pp

  9. Czimek, S.: An extension procedure for the constraint equations. Ann. PDE 4, no. 1, Art. 2, 122, (2018)

  10. Czimek, S.: Boundary harmonic coordinates on manifolds with boundary in low regularity. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03430-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Czimek, S.: The localised bounded \(L^2\) curvature theorem. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03458-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Czimek, S., Graf, O.: The spacelike-characteristic Cauchy problem of general relativity in low regularity. arXiv, (2019), 90

  13. Klainerman, S., Nicolò, F.: The evolution problem in general relativity. Progress in Mathematical Physics, 25. Birkhäuser Boston, Inc., Boston, MA, (2003). xiv + 385 pages

  14. Klainerman, S., Nicolò, F.: On local and global aspects of the Cauchy problem in general relativity. Class. Quantum Grav. 16, R73 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Klainerman, S., Rodnianski, I.: Causal geometry of Einstein-vacuum spacetimes with finite curvature flux. Invent. Math. 159(3), 437–529 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Klainerman, S., Rodnianski, I.: A geometric approach to the Littlewood-Paley theory. Geom. Funct. Anal. 16(1), 126–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klainerman, S., Rodnianski, I.: Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux. Geom. Funct. Anal. 16(1), 164–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded \(L^2\) curvature conjecture. Invent. Math. 202(1), 91–216 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Liu, J., Li, J.: A robust proof of the instability of naked singularities of a scalar field in spherical symmetry. Commun. Math. Phys. 363(2), 561–578 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Luk, J.: On the local existence for the characteristic initial value problem in general relativity. Int. Math. Res. Not. IMRN 20, 4625–4678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luk, J., Rodnianski, I.: Local propagation of impulsive gravitational waves. Commun. Pure Appl. Math. 68(4), 511–624 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nicolò, F.: Canonical foliation on a null hypersurface. J. Hyperbolic Differ. Equ. 1(3), 367–428 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roesch, H.: Proof of a Null Penrose Conjecture Using a New Quasi-local Mass. Ph.D Thesis, Duke University (2017)

  24. Penrose, R.: Gravitational Collapse: the Role of General Relativity. Rivista del Nuovo Cimento, Numero Speziale I, 252–276 (1969)

    ADS  Google Scholar 

  25. Sauter, J.: Foliations of null hypersurfaces and the Penrose inequality. Ph.D. Thesis, ETH Zurich (2008)

  26. Shao, A.: New tensorial estimates in Besov spaces for time-dependent (2+1)-dimensional problems. J. Hyperbolic Differ. Equ. 11(4), 821–908 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Szeftel, J.: Parametrix for wave equations on a rough background I: regularity of the phase at initial time. arXiv:1204.1768, (2012), 145

  28. Szeftel, J.: Parametrix for wave equations on a rough background II: construction and control at initial time. arXiv:1204.1769, (2012), 84

  29. Szeftel, J.: Parametrix for wave equations on a rough background III: space-time regularity of the phase. Astérisque 401, 321 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Szeftel, J.: Parametrix for wave equations on a rough background IV: control of the error term. arXiv:1204.1771, (2012), 284

  31. Szeftel, J.: Sharp Strichartz estimates for the wave equation on a rough background. Ann. Sci. Ecol. Norm. Supérieure 49(6), 1279–1309 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Q.: On the geometry of null cones in Einstein-vacuum spacetimes. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 285–328 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Both authors are very grateful to Jérémie Szeftel for many interesting and stimulating discussions. The second author is supported by the ERC grant ERC-2016 CoG 725589 EPGR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Czimek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of Propositions 2.32 and 2.33

In this section we prove the formulas from Proposition 2.32 and 2.33. The following computations are standard and can be found in various forms in [1, 22, 25] for instance. In what follows, we use the formulas from [8] pp. 149-150. We have

$$\begin{aligned} \alpha _{AB}&= \textbf{R}(L,e_A,L,e_B) = \textbf{R}(L,e'_A+\Upsilon _AL,L,e'_B+\Upsilon _BL) \\&= \textbf{R}(L,e'_A,L,e'_B) = (\alpha ')^{\dagger }_{AB}, \end{aligned}$$

and

$$\begin{aligned} \beta _A =&\frac{1}{2}\textbf{R}(e_A,L,{\,\underline{L}},L) \\ =&\frac{1}{2}\textbf{R}(e'_A+ \Upsilon _AL,L,{\,\underline{L}}'+2\Upsilon _Be'_B+|\Upsilon |^2L,L) \\ =&\frac{1}{2}\textbf{R}(e'_A,L,{\,\underline{L}}',L) + \Upsilon _B \textbf{R}(e'_A,L,e'_B,L) \\ =&\beta '_A + \Upsilon _B\alpha '_{AB}\\ =&(\beta ')^{\dagger }_A+\Upsilon _B(\alpha ')^{\dagger }_{AB}, \end{aligned}$$

and

$$\begin{aligned} \rho =&\frac{1}{4}\textbf{R}({\,\underline{L}},L,{\,\underline{L}},L) \\ =&\frac{1}{4}\textbf{R}({\,\underline{L}}'+2\Upsilon _Ae_A'+|\Upsilon |L,L,{\,\underline{L}}'+2\Upsilon _Be_B' + |\Upsilon |^2L,L) \\ =&\frac{1}{4}\textbf{R}({\,\underline{L}}',L,{\,\underline{L}}',L) + \frac{1}{2}\Upsilon _A\textbf{R}(e'_A,L,{\,\underline{L}}',L) \\&+ \frac{1}{2}\Upsilon _B\textbf{R}({\,\underline{L}}',L,e'_B,L) + \Upsilon _A\Upsilon _B\textbf{R}(e_A',L,e'_B,L) \\ =&\rho ' + (\beta ')^{\dagger }\cdot \Upsilon + (\alpha ')^{\dagger }\cdot \Upsilon \cdot \Upsilon . \end{aligned}$$

Following the previous computation for \(\rho \) we also obtain

$$\begin{aligned} \sigma= & {} \frac{1}{4} {{}^*}\textbf{R}({\,\underline{L}},L,{\,\underline{L}},L) = \sigma ' + \Upsilon _A {{}^*}\textbf{R}(e_A',L,{\,\underline{L}}',L) + \Upsilon _A\Upsilon _B {{}^*}\textbf{R}(e_A',L,e_B',L) \\= & {} \sigma ' - \left( {{}^*}\beta '\right) ^{\dagger }\cdot (\Upsilon ) - ({{}^*}\alpha ')^{\dagger }\cdot \Upsilon \cdot \Upsilon . \end{aligned}$$

We have

$$\begin{aligned} {{\underline{\beta }}}_A =&\frac{1}{2}\textbf{R}(e_A,{\,\underline{L}},{\,\underline{L}},L) {=} \frac{1}{2}\textbf{R}(e'_A {+} \Upsilon _AL,{\,\underline{L}}' {+} 2\Upsilon _Be'_B {+} |\Upsilon |^2L,{\,\underline{L}}'+2\Upsilon _Ce'_C + |\Upsilon |^2L, L) \\ =&\frac{1}{2}\textbf{R}(e'_A,{\,\underline{L}}',{\,\underline{L}}',L) + \frac{1}{2}\Upsilon _A\textbf{R}(L,{\,\underline{L}}',{\,\underline{L}}',L) \\&+ \Upsilon _B\textbf{R}(e'_A,e'_B,{\,\underline{L}}',L) + \Upsilon _C\textbf{R}(e'_A,{\,\underline{L}}',e'_C,L) \\&+ \Upsilon _A \Upsilon _B\textbf{R}(L,e'_B,{\,\underline{L}}',L) + \Upsilon _A\Upsilon _C\textbf{R}(L,{\,\underline{L}}',e'_C,L) + 2\Upsilon _B\Upsilon _C\textbf{R}(e'_A,e'_B,e'_C,L) \\&+ \frac{1}{2}|\Upsilon |^2\textbf{R}(e'_A,L,{\,\underline{L}}',L) + 2\Upsilon _A\Upsilon _B\Upsilon _C \textbf{R}(L,e'_B,e'_C,L) + |\Upsilon |^2\Upsilon _C\textbf{R}(e'_A,L,e'_C,L) \\ =&{{\underline{\beta }}}'_A - 2\Upsilon _A\rho ' + 2 {{}^*}\Upsilon _A\sigma ' + (-\Upsilon _A\rho '+{{}^*}\Upsilon _A\sigma ') - 2\Upsilon _A \Upsilon \cdot (\beta ')^{\dagger }-2\Upsilon _A\Upsilon \cdot (\beta ')^{\dagger }\\&- 2{{}^*}\Upsilon _A\Upsilon \cdot ({{}^*}\beta ')^{\dagger }+ |\Upsilon |^2\beta '_A- 2\Upsilon _A\Upsilon \cdot \Upsilon \cdot (\alpha ')^{\dagger }+ |\Upsilon |^2\Upsilon \cdot (\alpha ')^{\dagger }_{A} \\ =&({{\underline{\beta }}}')^{\dagger }_A -3\Upsilon _A\rho ' + 3{{}^*}\Upsilon _A\sigma ' - 4\Upsilon _A \Upsilon \cdot (\beta ')^{\dagger }-2{{}^*}\Upsilon _A \Upsilon \cdot ({{}^*}\beta ')^{\dagger }\\&+ |\Upsilon |^2(\beta ')^{\dagger }_A -2\Upsilon _A\Upsilon \cdot \Upsilon \cdot (\alpha ')^{\dagger }+ |\Upsilon |^2\Upsilon \cdot (\alpha ')^{\dagger }_A. \end{aligned}$$

This finishes the proof of Proposition 2.32. We turn to the connection coefficients. We have immediately \(\chi _{AB} = \chi '_{AB}\). We also have

$$\begin{aligned} \zeta _A =&\frac{1}{2}\textbf{g}(\textbf{D}_AL,{\,\underline{L}}) \\ =&\frac{1}{2}\textbf{g}(\textbf{D}_{e'_A + \Upsilon _A L}L,{\,\underline{L}}' +2\Upsilon _Be'_B +|\Upsilon |^2L) \\ =&\frac{1}{2}\textbf{g}(\textbf{D}_{e'_A}L,{\,\underline{L}}') + \Upsilon _B \textbf{g}(\textbf{D}_{e'_A}L,e'_B) \\ =&(\zeta ')^{\dagger }_A + \Upsilon \cdot \chi _A, \end{aligned}$$

and

Finally, we have

This finishes the proof of Proposition 2.33.

Appendix B. Proof of Lemmas 3.5 and 3.20

1.1 B.1. Proof of Lemma 3.5

This section is dedicated to the proof of Lemma 3.5.

In fact, we prove the following more general estimate

(B.1)

for \(-1< s < 0\).

Remark B.1

As it will be clear from what follows, the proof below does not work for other ranges of exponents s, and would require additional regularity assumptions on the 2-sphere S.

From Proposition 2.3 in [26], we have the following characterisation of \(H^s(S)\) using the Littlewood-Paley projectors defined in Section 3.2

$$\begin{aligned} \left\| F \right\| ^2_{H^s(S)} \simeq \sum _{k\ge 0} 2^{2sk}\left\| P_kF \right\| ^2_{L^2(S)} + \left\| P_{<0}F \right\| _{L^2(S)}^2. \end{aligned}$$
(B.2)

From Section 2.2 and Proposition 2.1 in [26], we recall the following properties of the Littlewood-Paley projection operators defined in Section 3.2. For all \(k\in {{\mathbb {Z}}}\), we have

$$\begin{aligned} P_k = P_kP_{k-1} + P_kP_k + P_kP_{k+1}, \end{aligned}$$
(B.3)

and for F an S-tangent tensor and for all \(k\in {{\mathbb {Z}}}\), we have

$$\begin{aligned} \begin{aligned} \left\| P_kF \right\| _{L^2(S)} \lesssim \left\| F \right\| _{L^2(S)}, \,\,\,\,\,\, \left\| P_{<0}F \right\| _{L^2(S)} \lesssim \left\| F \right\| _{L^2(S)}, \end{aligned} \end{aligned}$$
(B.4)

and,

(B.5)

We turn to the proof of estimate (B.1). Using (3.4), (B.2) and (B.5), we have

(B.6)

The first term in the right-hand side of (B.6) can be estimated using (B.3), (B.5) and that \(-1<s<0\)

For the second term in the right-hand side of (B.6), using (B.4), we first write the following decomposition

The first term can be estimated, using that preserves the support of the projectors \(P_k\) (see also Section 2.2 in [26]) and (3.4),

and similarly, we deduce for the last two terms, using (B.4) and (B.5)

Using this, (B.4) and that \(-1<s<0\), we therefore deduce that for the second term of (B.6) we have

Finally, plugging the above estimates into (B.6) and using (B.2), we obtain

This finishes the proof of Lemma 3.5.

1.2 B.2. Proof of Lemma 3.20

This section is dedicated to the proof of Lemma 3.20. We assume that f is a scalar function satisfying the elliptic equation (3.11)

Multiplying equation (3.11) by \(f-\overline{f}\) and integrating by part, we have

Using Lemma 3.19, we have the following Poincaré inequality

Therefore, using Sobolev Lemma 3.8, we have

and the bound holds by a standard absorption argument. The bound on \({{\mathcal {H}}}\) follows by integration in v. This finishes the proof of Lemma 3.20.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czimek, S., Graf, O. The Canonical Foliation On Null Hypersurfaces in Low Regularity. Ann. PDE 8, 23 (2022). https://doi.org/10.1007/s40818-022-00124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-022-00124-7