Skip to main content
Log in

Coordinates at Small Energy and Refined Profiles for the Nonlinear Schrödinger Equation

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications, Applied Mathematical Sciences, vol. 75, 3rd edn. Springer, New York (1988)

    Book  Google Scholar 

  2. Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)

    Article  MathSciNet  Google Scholar 

  3. Buslaev, V., Perelman, G.: On the stability of solitary waves for nonlinear Schrödinger equations, Nonlinear evolution equations, editor N.N. Uraltseva, Transl. Ser. 2, 164, Amer. Math. Soc., 75–98, American Mathematical Society, Providence (1995)

  4. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  5. Cohen-Tannoudji, C., Diu, B., Laloë, F.: Quantum Mechanics, vol. I. Wiley, New-York (1991)

    MATH  Google Scholar 

  6. Cuccagna, S., Maeda, M.: On small energy stabilization in the NLS with a trapping potential. Anal. PDE 8(6), 1289–1349 (2015)

    Article  MathSciNet  Google Scholar 

  7. De Bièvre, S., Genoud, F., Rota Nodari, S.: Orbital stability: analysis meets geometry, Nonlinear optical and atomic systems, Lecture Notes in Mathematics, vol. 2146, Springer, Cham, 147–273 (2015)

  8. Gang, Z.: Perturbation expansion and N-th order Fermi Golden Rule of the nonlinear Schrödinger equations. J. Math. Phys. 48, 053509 (2007)

    Article  MathSciNet  Google Scholar 

  9. Gang, Z., Sigal, I.M.: Asymptotic stability of nonlinear Schrödinger equations with potential. Rev. Math. Phys. 17, 1193–1207 (2005)

    Article  Google Scholar 

  10. Gang, Z., Weinstein, M.I.: Dynamics of nonlinear Schrödinger/Gross-Pitaeskii equations; mass transfer in systems with solitons and degenerate neutral modes. Anal. PDE 1, 267–322 (2008)

    Article  MathSciNet  Google Scholar 

  11. Gang, Z., Weinstein, M.I.: Equipartition of energy in nonlinear Schrödinger/Gross-Pitaeskii Equations. Appl. Math. Res. Express. AMRX pp. 123–181 (2011)

  12. Gustafson, S., Phan, T.V.: Stable directions for degenerate excited states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 43(4), 1716–1758 (2011)

    Article  MathSciNet  Google Scholar 

  13. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves. Int. Math. Res. Not. 2004(66), 3559–3584 (2004)

    Article  Google Scholar 

  14. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Universitext, Springer, New York (2015)

    Book  Google Scholar 

  15. Maeda, M.: Existence and asymptotic stability of quasi-periodic solutions of discrete NLS with potential. SIAM J. Math. Anal. 49(5), 3396–3426 (2017)

    Article  MathSciNet  Google Scholar 

  16. Merle, F., Raphael, P.: Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation. Geom. Funct. Anal. 13(3), 591–642 (2003)

    Article  MathSciNet  Google Scholar 

  17. Merle, F., Raphael, P.: On universality of blow-up profile for $L^2$ critical nonlinear Schrödinger equation. Invent. Math. 156(3), 565–672 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  18. Merle, F., Raphael, P.: The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation. Ann. Math. (2) 161(1), 157–222 (2005)

    Article  MathSciNet  Google Scholar 

  19. Merle, F., Raphael, P.: On a sharp lower bound on the blow-up rate for the $L^2$ critical nonlinear Schrödinger equation. J. Am. Math. Soc. 19, 37–90 (2006)

    Article  Google Scholar 

  20. Sigal, I.M.: Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions. Commun. Math. Phys. 153(2), 297–320 (1993)

    Article  ADS  Google Scholar 

  21. Soffer, A., Weinstein, M.I.: Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136, 9–74 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Soffer, A., Weinstein, M.I.: Selection of the ground state for nonlinear Schrödinger equations. Rev. Math. Phys. 16(8), 977–1071 (2004)

    Article  MathSciNet  Google Scholar 

  23. Taylor, M.: Partial Differential Equations II, Applied Mathematical Science 116. Springer, New York (1997)

    Google Scholar 

  24. Tsai, T.P., Yau, H.T.: Classification of asymptotic profiles for nonlinear Schrödinger equations with small initial data. Adv. Theor. Math. Phys. 6(1), 107–139 (2002)

    Article  MathSciNet  Google Scholar 

  25. Tsai, T.P., Yau, H.T.: Asymptotic dynamics of nonlinear Schrödinger equations: resonance dominated and radiation dominated solutions. Commun. Pure Appl. Math. 55, 153–216 (2002)

    Article  Google Scholar 

  26. Yajima, K.: The $W^{k, p}$-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47, 551–581 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

C. was supported by a FIRB of the University of Trieste. M.M. was supported by the JSPS KAKENHI Grant Number 19K03579, G19KK0066A, JP17H02851 and JP17H02853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Maeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proofs of Lemma 1.5 and of Proposition 1.10

A Proofs of Lemma 1.5 and of Proposition 1.10

Proof of Lemma 1.5

For \(j,k\in \{1,\cdots ,N\}\), \(j< k\), set \(n_{jk}\) to be the smallest integer satisfying \(n_{jk}( \omega _k-\omega _j)+\omega _k>0\). Then, for \(\mathbf {m}^{(jk)}=(m_1^{(jk)},\cdots ,m_N^{(jk)})\) defined by

$$\begin{aligned} m_j^{(jk)}= -n_{jk},\ m_k^{(jk)}=n_{jk}+1\text { and }m_l^{(jk)}=0\ (l\ne j,k), \end{aligned}$$
(A.1)

we have \(\mathbf {m}^{(jk)} \in \mathbf {R}_{\mathrm {min}}\). Suppose \(\mathbf {R}_{\mathrm {min}}\) is an infinite set. Then, there exists \(j\in \{1,\cdots ,N\}\) and \(\{\mathbf {m}_k\}_{k=1}^\infty \subset \mathbf {R}_{\mathrm {min}}\) s.t. \(|m_{kj}| \xrightarrow {k\rightarrow \infty } \infty \). If there exists \(M>0\) s.t. for all \(l\ne j\), \(|m_{kj}|\le M\), then \(\mathbf {m}_k\) cannot satisfy \(\sum \mathbf {m}_k=1\). Therefore, if necessary taking a subsequence, there exists \(l\ne j\) s.t. \(|m_{kl}| \xrightarrow {k\rightarrow \infty } \infty \). However, for k sufficiently large, we have \(|\mathbf {m}^{(jl)}|\prec |\mathbf {m}_k|\) with \(\mathbf {m}^{(jl)} \in \mathbf {R}_{\mathrm {min}}\) defined by (A.1). This, by the definition of \(\mathbf {R}_{\mathrm {min}}\) in (1.8), implies \(\mathbf {m}_k\not \in \mathbf {R}_{\mathrm {min}}\), contradicting the hypothesis \(\mathbf {m}_k \in \mathbf {R}_{\mathrm {min}}\).

Let \(\mathbf {m}\in \mathbf {NR}_1\). It is elementary, by the definition of \(\mathbf {NR}_1\) (1.9), that for all \(\mathbf {n} \in \mathbf {R}_{\mathrm {min}}\), either there exists j s.t. \(|n_j|>|m_j|\) or \( | \mathbf {n} | = | \mathbf {m} |\). So, for \(\mathbf {n}=\mathbf {m}^{(jk)}\) in (A.1), we have either \(|\mathbf {m}|=|\mathbf {m}^{(jk)}|\) or \(|m_l|<|m_l^{(jk)}|\) for \(l=j\) or k. Since there are finitely many \(\mathbf {m}\in \mathbf {NR}_1\) s.t. \(|\mathbf {m}|=|\mathbf {m}^{(jk)}|\), we can assume \(|\mathbf {m}|\ne |\mathbf {m}^{(jk)}|\) for all \(j<k\). Thus, for all \(j<k\), we have \(|m_l|< m^{(jk)}_l\) for at least one of \(l \in \{j,k\}\). It is easy to conclude that \(|m_j|\le \max _{1\le k<l\le N} \left( |n_{kl}|+1\right) \) for all j except for at most one. However, from \(\sum \mathbf {m} =1\) it is immediate that this special j must satisfy \(|m_j| \le N \max _{1\le k<l\le N} \left( |n_{kl}|+1\right) \). Thus, \(\mathbf {m}\) is in a fixed bounded set. Hence \(\mathbf {NR}_1\) is a finite set.

Proof of Proposition 1.10

The simple proof is analogous to Bambusi and Cuccagna [2, p.1444]. For \(\mathbf {m} \in \mathbf {R}_{\mathrm {min}}\) set \({\mathbb N}\ni L_{\mathbf {m}} := \frac{\Vert \mathbf {m} \Vert -1}{2}\). Then from (1.13)–(1.14), for any \(\mathbf {m} \in \mathbf {R}_{\mathrm {min}}\) we have

$$\begin{aligned}&G_{\mathbf {m}}= N _{\mathbf {m}} \frac{g^{\left( L_{\mathbf {m}} \right) }(0)}{L_{\mathbf {m}} !} \phi ^{\mathbf {m}} + K _{\mathbf {m}}, \end{aligned}$$

where \(N _{\mathbf {m}} \in {\mathbb N}\) is the number of elements of \( A(L_{\mathbf {m}},\mathbf {m})\), which in this particular case is given by the set

$$\begin{aligned}&A(L_{\mathbf {m}},\mathbf {m})= \left\{ \{\mathbf {e}_{\ell _j}\}_{j=1}^{\Vert \mathbf {m} \Vert }\in (\mathbf {NR}_0)^{\Vert \mathbf {m} \Vert }\ |\ \sum _{j=0} ^{ L_{\mathbf {m}}} \mathbf {e}_{\ell _{2j+1}}-\sum _{j=1}^{ L_{\mathbf {m}}} \mathbf {e}_{\ell _{2j }}= \mathbf {m} \right\} , \end{aligned}$$

and where

$$\begin{aligned}&K _{\mathbf {m}} :=\sum _{1\le m < L_{\mathbf {m}} } \frac{1}{m!}g^{(m)}(0)\sum _{(\mathbf {m}_1,\cdots ,\mathbf {m}_{2m+1})\in A(m,\mathbf {m})}{\widetilde{\phi }}_{\mathbf {m}_1}(0)\cdots {\widetilde{\phi }}_{\mathbf {m}_{2m+1}}(0). \end{aligned}$$

So, expanding we have on the sphere \(S _{\mathbf {m}}=\{ \xi : |\xi |^2 = \mathbf {m}\cdot {\varvec{\omega }} \}\) we obtain

$$\begin{aligned} \Vert \widehat{G} _{\mathbf {m}} \Vert ^{2}_{L^2(S _{\mathbf {m}})} =&\left( N _{\mathbf {m}} \frac{g^{\left( L_{\mathbf {m}} \right) }(0)}{L_{\mathbf {m}} !} \right) ^2 \Vert \widehat{\phi ^ \mathbf {m}} \Vert ^{2}_{L^2(S _{\mathbf {m}})} \\&+ 2 N _{\mathbf {m}} \frac{g^{\left( L_{\mathbf {m}} \right) }(0)}{L_{\mathbf {m}} !} \left\langle \widehat{\phi ^ \mathbf {m}} , \widehat{K _{\mathbf {m}}} \right\rangle _{L^2(S _{\mathbf {m}})} + \Vert \widehat{K} _{\mathbf {m}} \Vert ^{2}_{L^2(S _{\mathbf {m}})} . \end{aligned}$$

Equating the above to 0 we obtain, in view of (1.16), a quadratic equation for \(g^{\left( L_{\mathbf {m}} \right) }(0)\) which expresses it in terms of \((g' (0),...., g ^{(L_{\mathbf {m}}-1)} (0))\). This proves Proposition 1.10. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuccagna, S., Maeda, M. Coordinates at Small Energy and Refined Profiles for the Nonlinear Schrödinger Equation. Ann. PDE 7, 16 (2021). https://doi.org/10.1007/s40818-021-00105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-021-00105-2

Navigation