Skip to main content
Log in

Nonlinear Scalar Perturbations of Extremal Reissner–Nordström Spacetimes

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We present the first rigorous study of nonlinear wave equations on extremal black hole spacetimes without any symmetry assumptions on the solution. Specifically, we prove global existence with asymptotic blow-up for solutions to nonlinear wave equations satisfying the null condition on extremal Reissner–Nordström backgrounds. This result shows that the extremal horizon instability persists in model nonlinear theories. Our proof crucially relies on a new vector field method that allows us to obtain almost sharp decay estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. This transformation maps the event horizon to null infinity and vice versa. See also Appendix A.1.

References

  1. Alinhac, S.: Geometric analysis of hyperbolic differential equations: an introduction. The London Mathematical Society, Lecture note series. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Andersson, L., Bäckdahl, T., Blue, P., Ma, S.: Stability for linearized gravity on the Kerr spacetime. arXiv:1903.03859 (2019)

  3. Angelopoulos, Yannis: Global spherically symmetric solutions of non-linear wave equations with null condition on extremal Reissner-Nordström spacetimes. Int. Math. Res. Not. 11, 3279–3355 (2016)

    MATH  Google Scholar 

  4. Angelopoulos, Y., Aretakis, S., Gajic, D.: Asymptotic blow-up for a class of semi-linear wave equations on extremal Reissner–Nordström spacetimes. arXiv:1612.01562 (2016)

  5. Angelopoulos, Y., Aretakis, Stefanos, Gajic, D.: The trapping effect on degenerate horizons. Ann. Henri Poincaré 18(5), 1593–1633 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Angelopoulos, Y., Aretakis, Stefanos, Gajic, D.: Horizon hair of extremal black holes and measurements at null infinity. Phys. Rev. Lett. 121(13), 131102 (2018)

    ADS  Google Scholar 

  7. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds. arXiv:1807.03802 (2018)

  8. Angelopoulos, Y., Aretakis, Stefanos, Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric, stationary backgrounds. Adv. Math. 323, 529–621 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Angelopoulos, Y., Aretakis, Stefanos, Gajic, D.: A vector field approach to almost sharp decay for the wave equation on spherically symmetric, stationary spacetimes. Ann. PDE 4, 15 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Aretakis, Stefanos: Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Aretakis, Stefanos: Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12, 1491–1538 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Aretakis, Stefanos: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263, 2770–2831 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Aretakis, Stefanos: A note on instabilities of extremal black holes from afar. Class. Quantum Grav. 30, 095010 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Aretakis, Stefanos: On a foliation-covariant elliptic operator on null hypersurfaces. Int. Math. Res. Not. 2015(15), 6433–6469 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Aretakis, Stefanos: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19, 507–530 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Aretakis, Stefanos: The characteristic gluing problem and conservation laws for the wave equation on null hypersurfaces. Ann. PDE 3(1), 3 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Aretakis, Stefanos: Dynamics of extremal black holes. Springer, Berlin (2018)

    MATH  Google Scholar 

  18. Bizon, P., Kahl, M.: A Yang-Mills field on the extremal Reissner-Nordström black hole. Class. Quantum Gravit. 33, 175013 (2016)

    ADS  MATH  Google Scholar 

  19. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold I. Local decay estimates. Adv. Differ. Eq. 8, 595–614 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Blue, P., Soffer, A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256, 1–90 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268, 481–504 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Brenneman, L.: Measuring the angular momentum of supermassive black holes. Springer briefs in astronomy. Springer, Berlin (2013)

    Google Scholar 

  23. Burko, Lior M., Khanna, G.: Linearized stability of extreme black holes. Phys. Rev. D 97, 061502 (2018)

    ADS  Google Scholar 

  24. Casals, M., Gralla, Samuel E., Zimmerman, P.: Horizon instability of extremal Kerr black holes: nonaxisymmetric modes and enhanced growth rate. Phys. Rev. D 94, 064003 (2016)

    ADS  MathSciNet  Google Scholar 

  25. Couch, W., Torrence, R.: Conformal invariance under spatial inversion of extreme Reissner-Nordström black holes. Gen. Relat. Gravit. 16, 789–792 (1984)

    ADS  MATH  Google Scholar 

  26. Cvetic, M., Satz, Alejandro: General relation between Aretakis charge and Newman-Penrose charge. Phys. Rev. D 98, 124035 (2018)

    ADS  MathSciNet  Google Scholar 

  27. Dafermos, M., Holzegel, G., Rodnianski, I.: Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case \(|a| \ll m\). arXiv:1711.07944 (2017)

  28. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Math. 222(1), 1–214 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Dafermos, M., Rodnianski, Igor: Small-amplitude nonlinear waves on a black hole background. J. Math. Pures Appl. 84, 1147–1172 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Dafermos, M., Rodnianski, I.: The redshift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62, 859–919. arXiv:0512.119 (2009)

  31. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: XVIth International Congress on Mathematical Physics, pp. 421–432 (2010)

  32. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T. et al (ed.) Proceedings of the 12 Marcel Grossmann Meeting, World scientific, Singapore, pp. 132–189, arXiv:1010.5137 (2011)

  33. Dafermos, M., Rodnianski, Igor: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185, 467–559 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In :Evolution equations, Clay Mathematics Proceedings, Vol. 17, Amer. Math. Soc., Providence, RI, pp. 97–205. arXiv:0811.0354 (2013)

  35. Dain, S.: Proof of the angular momentum-mass inequality for axisymmetric black holes. J. Differ. Geom. 79, 33–67 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Figueras, Pau, Lucietti, J.: On the uniqueness of extremal vacuum black holes. Class. Quantum Gravit. 27, 095001 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Giorgi, E.: The linear stability of Reissner-Nordström spacetime: the full subextremal range. arXiv:1910.05630

  38. Godazgar, H., Godazgar, M., Pope, C.N.: Aretakis charges and asymptotic null infinity. Phys. Rev. D 96, 084055 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Hadar, S., Reall, H.S.: Is there a breakdown of effective field theory at the horizon of an extremal black hole? J. High Energy Phys. 2017(12), 62 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Klainerman, S., Szeftel, J.: Global nonlinear stability of Schwarzschild spacetime under polarized perturbations. arXiv:1711.07597 (2017)

  41. Lindblad, H., Metcalfe, J., Wang, C.: The Strauss conjecture on Kerr black hole backgrounds. Mathematische Annalen 359(3–4), 637–661 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N.: On the horizon instability of an extreme Reissner-Nordström black hole. JHEP 1303, 035 (2013)

    ADS  MATH  Google Scholar 

  43. Luk, Jonathan: The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes. J. Eur. Math. Soc. 15(5), 1629–1700 (2013)

    MathSciNet  MATH  Google Scholar 

  44. Luk, J., Rodnianski, Igor: Local propagation of impulsive gravitational waves. Commun. Pure Appl. Math. 68, 511–624 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Luk, Jonathan, Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations. Camb. J. Math. 5(4), 435–570 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293, 37–83 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2, 6 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Murata, Keiju, Reall, H.S., Tanahashi, N.: What happens at the horizon(s) of an extreme black hole? Class. Quantum Gravit. 30, 235007 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Ori, A.: Late-time tails in extremal Reissner-Nordström spacetime. arXiv:1305.1564 (2013)

  50. Schlue, V.: Decay of linear waves on higher-dimensional Schwarzschild black holes. Anal. PDE 6(3), 515–600 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Sela, Orr: Late-time decay of perturbations outside extremal charged black hole. Phys. Rev. D 93, 024054 (2016)

    ADS  MathSciNet  Google Scholar 

  52. Strominger, A., Vafa, Cumrun: Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 379, 99–104 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 248–292, 2008 (2011)

    MATH  Google Scholar 

  54. Volonteri, M., Madau, Piero, Quataert, E., Rees, M.: The distribution and cosmic evolution of massive black hole spins. Astrophys. J. 620, 69–77 (2005)

    ADS  Google Scholar 

  55. Yang, Shiwu: Global solutions of nonlinear wave equations in time dependent inhomogeneous media. Arch. Ration. Mech. Anal. 209, 683–728 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Angelopoulos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A.

Appendix A.

1.1 A.1. The Couch-Torrence Conformal Isometry

An extremal Reissner–Nordström spacetime of mass M admits a conformal isometry called the Couch-Torrence first introduced in [25] that in ingoing Eddington-Finkelstein coordinates is given by

$$\begin{aligned} {\bar{\Phi }} ( v,r,\omega ) \doteq \left( u = v , r' = M + M^2 (r-M)^{-1} , \omega \right) , \end{aligned}$$

and through it \({\mathcal {H}}^{+}\) is mapped onto \({\mathcal {I}}^{+}\).

1.2 A.2. The d’Alembertian in Different Coordinates

The nonlinearity of (1.1) can be written as follows in double null coordinates (where \(\phi = r \psi \)):

(A.1)

Equation (1.1) can then be written in terms of \(\phi = r \psi \) as follows in double null coordinates:

(A.2)

1.3 A.3. Basic Inequalities

We record some basic inequalities. The first is the Sobolev inequality on the sphere from which we have that for any smooth function f:

$$\begin{aligned} \int _{{\mathbb {S}}^2} f^2 \, d\omega \lesssim \sum _{k \le 2}\int _{{\mathbb {S}}^2} ( \Omega ^k f )^2 \, d\omega . \end{aligned}$$
(A.3)

The second one is Hardy’s inequality, which close to the horizon it has the following form for a smooth function f and for any \(s \ne 1\) and for any \(M \le r_1< r_2 < \infty \):

$$\begin{aligned}&\int _{u_{r_2} (v)}^{u_{r_1} (v)} (r-M)^{-s} f^2 \, du \lesssim \frac{1}{(1+s)^2} \int _{u_{r_2} (v)}^{u_{r_1} (v)} (r-M)^{-s-2} ({\underline{L}} f )^2 \, du\nonumber \\&\qquad + 2 (r_1 - M )^{-s-1} f^2 ( u_{r_1} (v) , v) , \end{aligned}$$
(A.4)

and close to infinity it gives us that for any \(M< r_1 < r_2 \le \infty \):

$$\begin{aligned} \int _{v_{r_1} (u)}^{v_{r_2} (u)} r^s f^2 \, dv \lesssim \frac{1}{(1+s)^2} \int _{v_{r_1} (u)}^{v_{r_2} (u)} r^{s+2} (L f )^2 \, dv + 2 r^{s+1} f^2 (u , v_{r_2} (u)) , \end{aligned}$$
(A.5)

where in the case of the horizon if \(r_1 = M\) then the last term is considered as:

$$\begin{aligned} 2 \lim _{u \rightarrow \infty } (r - M )^{-s-1} f^2 ( u_{r} (v) ,\qquad \end{aligned}$$

and in the case of infinity if \(r_2 = \infty \) then the last term is considered as:

$$\begin{aligned} 2 \lim _{v \rightarrow \infty } r^{s+1} f^2 (u , v_{r} (u)) . \end{aligned}$$

For proofs of these inequalities see [7].

1.4 A.4. Elliptic Estimates

We record as well the following basic elliptic estimate from [11]:

$$\begin{aligned} \begin{aligned} \int _{\Sigma _{\tau } \cap \{ r\ge r_0 > M \}} (\partial _a \partial _b \psi )^2 d\mu _{\Sigma } \lesssim&\int _{\Sigma _{\tau } \cap \{ r\ge r_0 \}} J^T_{\mu } [\psi ] \cdot \mathbf{n }_{\Sigma } d\mu _{\Sigma } \\&+ \int _{\Sigma _{\tau } \cap \{ r\ge r_0 \}} J^T_{\mu } [T\psi ] \cdot \mathbf{n }_{\Sigma } d\mu _{\Sigma } + \int _{\Sigma _{\tau } \cap \{ r\ge r_0 \}} |F|^2 d\mu _{\Sigma } , \end{aligned} \end{aligned}$$
(A.6)

for any fixed \(r_0 > M\), and any \(\partial _a , \partial _b \in \{ L , {\underline{L}} , \partial _{\theta }, \partial _{\sigma } \}.\)

1.5 A.5. Additional Norms

For any smooth function \(f : {\mathcal {M}} \rightarrow {\mathbb {R}}\) we define for any \(\tau \in [ \tau _0 , \infty )\) the norm:

$$\begin{aligned}&E^{\tau } [ f ] \doteq \int _{\Sigma _{\tau }} f^2 \, d\mu _{\Sigma _{\tau }} + \sum _{\begin{array}{c} k \le 5 \\ l \le 5 \end{array} } \int _{\Sigma _{\tau }} J^T [ \Omega ^k T^l f ] \cdot \mathbf{n }_{\Sigma _{\tau }} \, d\mu _{\Sigma _{\tau }} \\&\qquad +\int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-3+\delta _1} ( {\underline{L}} f_0 )^2 \, d\omega du + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-1+\delta _1} \left( {\underline{L}} \left( \frac{2r}{D} {\underline{L}} f_0 \right) \right) ^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^I} r^{3-\delta _1} ( L f_0 )^2 \, d\omega dv + \int _{{\mathcal {N}}_{\tau }^I} r^{1-\delta _1} \left( L \left( \frac{2r^2}{D} L f_0 \right) \right) ^2 \, d\omega dv\\&\qquad + \sum _{k \le 5} \Bigg [ \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-3-\delta _2} ( {\underline{L}} \Omega ^k f_{\ge 1} )^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-1-\delta _2} \left( {\underline{L}} \left( \frac{2r}{D} {\underline{L}} \Omega ^k f_{\ge 1} \right) \right) ^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^I} r^{3+\delta _2} ( L \Omega ^k f_{\ge 1} )^2 \, d\omega dv + \int _{{\mathcal {N}}_{\tau }^I} r^{1+\delta _2} \left( L \left( \frac{2r^2}{D} L \Omega ^k f_{\ge 1} \right) \right) ^2 \, d\omega dv \\&\qquad +\int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-3-\delta _2} ( {\underline{L}} \Omega ^k T f )^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-1-\delta _2} \left( {\underline{L}} \left( \frac{2r}{D} {\underline{L}} \Omega ^k T f \right) \right) ^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^I} r^{3+\delta _2} ( L\Omega ^k T f )^2 \, d\omega dv + \int _{{\mathcal {N}}_{\tau }^I} r^{1+\delta _2} \left( L \left( \frac{2r^2}{D} L \Omega ^k T f \right) \right) ^2 \, d\omega dv \\&\qquad +\int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-2-\delta _2} ( {\underline{L}} \Omega ^k T^2 f )^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-\delta _2} \left( {\underline{L}} \left( \frac{2r}{D} {\underline{L}} \Omega ^k T^2 f \right) \right) ^2 \, d\omega du \\&\qquad + \int _{{\mathcal {N}}_{\tau }^I}r^{2+\delta _2} ( L\Omega ^k T^2 f )^2 \, d\omega dv + \int _{{\mathcal {N}}_{\tau }^I} r^{\delta _2} \left( L \left( \frac{2r^2}{D} L \Omega ^k T^2 f \right) \right) ^2 \, d\omega dv \\&\qquad +\int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-2} ( {\underline{L}} \Omega ^k T^3 f )^2 \, d\omega du + \int _{{\mathcal {N}}_{\tau }^I} r^2 ( L\Omega ^k T^3 f )^2 \, d\omega dv \\&\qquad + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-1-\delta _2} ( {\underline{L}} \Omega ^k T^4 f )^2 \, d\omega du + \int _{{\mathcal {N}}_{\tau }^I} r^{1+\delta _2} ( L\Omega ^k T^4 f )^2 \, d\omega dv \\&\qquad + \int _{{\mathcal {N}}_{\tau }^H} (r-M)^{-1-\delta _2} ( {\underline{L}} \Omega ^k T^5 f )^2 \, d\omega du + \int _{{\mathcal {N}}_{\tau }^I} r^{1+\delta _2} ( L\Omega ^k T^5 f )^2 \, d\omega dv . \end{aligned}$$

Moreover we also define the standard Sobolev norms for any \(s \in {\mathbb {N}}\) as:

$$\begin{aligned} \Vert f \Vert _{H^s_{\tau }} \doteq \sum _{| \alpha | \le s} \left( \int _{\Sigma _{\tau }} ( \partial ^{\alpha } f )^2 \, d\mu _{\Sigma _{\tau }} \right) ^{1/2}\ \text { and } \ \ \Vert f \Vert _{{\widetilde{H}}^s_{\tau }} \doteq \sum _{| \alpha | \le s} \left( \int _{\Sigma ^{int}_{\tau }} ( \partial ^{\alpha } f )^2 \, d\mu _{\Sigma ^{int}_{\tau }} \right) ^{1/2} , \end{aligned}$$

where \(\partial \in \{T , Y , \partial _{\theta }, \partial _{\varphi } \}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulos, Y., Aretakis, S. & Gajic, D. Nonlinear Scalar Perturbations of Extremal Reissner–Nordström Spacetimes. Ann. PDE 6, 12 (2020). https://doi.org/10.1007/s40818-020-00087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-020-00087-7

Navigation