\(L^\infty \) Instability of Prandtl Layers


In 1904, Prandtl introduced his famous boundary layer in order to describe the behavior of solutions of incompressible Navier Stokes equations near a boundary as the viscosity goes to 0. His Ansatz was that the solution of Navier Stokes equations can be described as a solution of Euler equations, plus a boundary layer corrector, plus a vanishing error term in \(L^\infty \) in the inviscid limit. In this paper we prove that, for a class of smooth solutions of Navier Stokes equations, namely for shear layer profiles which are unstable for Rayleigh equations, this Ansatz is false if we consider solutions with Sobolev regularity, in strong contrast with the analytic case, pioneered by Sammartino and Caflisch (Commun Math Phys 192(2)433–461, 1998; Commun Math Phys 192(2)463–491, 1998). Meanwhile we address the classical problem of the nonlinear stability of shear layers near a boundary and prove that if a shear flow is spectrally unstable for Euler equations, then it is non linearly unstable for the Navier Stokes equations provided the viscosity is small enough.

This is a preview of subscription content, access via your institution.


  1. 1.

    Alexandre, R., Wang, Y.-G., Xu, C.-J., Yang, T.: Well-posedness of the Prandtl equation in Sobolev spaces. J. Am. Math. Soc. 28(3), 745–784 (2015)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Drazin, P.G., Reid, W. H.: Hydrodynamic stability, 2nd edition. In: With a foreword by John Miles (ed.) Cambridge mathematical library. Cambridge University Press, Cambridge (2004)

  3. 3.

    Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Gerard-Varet, D., Maekawa, Y., Masmoudi, N.: Gevrey stability of Prandtl expansions for 2D Navier-Stokes flows. Duke Math. J. 167(13), 2531–2631 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1273–1325 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gérard-Varet, D., Nguyen, T.T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Grenier, E., Guo, Y., Nguyen, T.T.: Spectral stability of Prandtl boundary layers: an overview. Analysis (Berlin) 35(4), 343–355 (2015)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Grenier, E., Guo, Y., Nguyen, T.T.: Spectral instability of characteristic boundary layer flows. Duke Math. J. 165(16), 3085–3146 (2016)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers SIAM. J. Math. Anal. 51(2), 1279–1296 (2019)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Grenier, E., Nguyen, T.T.: Sublayer of prandtl boundary layers. Arch. Ration. Mech. Anal. 229(3), 1139–1151 (2018)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Grenier, E., Nguyen, T. T.: On nonlinear instability of Prandtl’s boundary layers: the case of Rayleigh’s stable shear flows. arXiv:1706.01282 (2017)

  13. 13.

    Grenier, E., Nguyen, T.T.: Green function of Orr-Sommerfeld equations away from critical layers. SIAM J. Math. Anal. 51(2), 1279–1296 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Guo, Y., Nguyen, T.T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal. 199(1), 145–175 (2011)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Maekawa, Y.: On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Commun. Pure Appl. Math. 67(7), 1045–1128 (2014)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Masmoudi, N., Rousset, F.: Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal. 203(2), 529–575 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. Commun. Pure Appl. Math. 68(10), 1683–1741 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory. Applied mathematics and mathematical computation, vol. 15. Chapman & Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  20. 20.

    Paddick, M.: Stability and instability of Navier boundary layers. Differ. Integr. Eq. 27(9–10), 893–930 (2014)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Prandtl, L. : Uber flüssigkeits-bewegung bei sehr kleiner reibung. pp. 484–491, (1904)

  22. 22.

    Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    Sammartino, M., Caflisch, R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192(2), 463–491 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Schlichting, H., Gersten, K.: Boundary-layer theory, 8th revised and enlarged edition. Springer, Heidelberg (2000)

Download references


TN’s research was partly supported by the NSF under grant DMS-1764119 and by an AMS Centennial Fellowship.

Author information



Corresponding author

Correspondence to Toan T. Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grenier, E., Nguyen, T.T. \(L^\infty \) Instability of Prandtl Layers. Ann. PDE 5, 18 (2019). https://doi.org/10.1007/s40818-019-0074-3

Download citation


  • Prandtl’s boundary layer theory
  • Instability of shear flows
  • Orr-Sommerfeld equations
  • Green functions
  • Generators functions
  • Boundary viscous sublayers