Abstract
Despite its conceptual and practical importance, a rigorous derivation of the steady incompressible Navier–Stokes–Fourier system from the Boltzmann theory has been an outstanding open problem for general domains in 3D. We settle this open question in the affirmative, in the presence of a small external field and a small boundary temperature variation for the diffuse boundary condition. We employ a recent quantitative \(L^{2}\)–\(L^{\infty }\) approach with new \(L^{{6}}\) estimates for the hydrodynamic part \(\mathbf {P}f\) of the distribution function. Our results also imply the validity of Fourier law in the hydrodynamical limit, and our method leads to an asymptotical stability of steady Boltzmann solutions as well as the derivation of the unsteady Navier–Stokes–Fourier system.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Stability for Rayleigh–Benard convective solutions of the Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 125–187 (2010)
Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models. 4(1), 109–138 (2011)
Arkeryd, L., Nouri, A.: \(L^1\) solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413 (2000)
Asano, K., Ukai, S.: The Euler limit and the initial layer of the nonlinear Boltzmann equation. Hokkaido Math. J. 12, 303–324 (1983)
Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991)
Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations, II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)
Bardos, C., Golse, F., Levermore, D.: Acoustic and Stokes limits for the Boltzmann equation. C. R. Acad. Sci. Paris Ser. 1 Math. 327, 323–328 (1998)
Bardos, C., Golse, F., Levermore, D.: The acoustic limit for the Boltzmann equation. Arch. Ration. Mech. Anal. 153, 177–204 (2000)
Bardos, C., Ukai, S.: The classical incompressible Navier–Stokes limit of the Boltzmann equation. Math. Mod. Meth. Appl. Sci. 1, 235 (1991)
Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15, 53–157 (1979)
Bobylev, A.V., Mossberg, E.: On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinet. Relat. Models 1, 521–555 (2008)
Caflisch, R.E.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980)
Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains. Submitted (2017). arXiv:1710.03851
Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)
De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier–Stokes and Euler Limits of the Boltzmann Equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)
DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)
Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239 (2013)
Esposito, R., Lebowitz, J.L., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)
Esposito, R., Lebowitz, J.L., Marra, R.: The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412 (1995)
Esposito, R., Lebowitz, J.L., Marra, R.: Solutions to the Boltzmann equation in the Boussinesq regime. J. Stat. Phys. 90, 1129–1178 (1998)
Gérard, P., Golse, F.: Averaging regularity results for PDEs under transversality assumptions. Commun. Pure Appl. Math. XLV, 1–26 (1992)
Golse, F.: Hydrodynamic limits, European Congress of Mathematics, pp. 699–717. Eur. Math. Soc, Zürich (2005)
Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76, 110–125 (1988)
Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)
Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)
Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. Méc. 9, 183–231 (1970)
Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. Méc. 11, 443–490 (1972)
Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)
Guo, Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153, 593–630 (2003)
Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)
Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197, 713–809 (2010)
Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 299, 469–501 (2010)
Guo, Y., Jang, J., Jiang, N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63, 337–361 (2010)
Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains, Invent. Math. 207(1), 115–290 (2017)
Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV regularity of the Boltzmann equation in non-convex domains. Arch. Ration. Mech. Anal. 220(3), 1045–1093 (2016)
Hilbert, D.: Begründung der kinetischen Gastheorie. Math. Ann. 72, 331–407 (1916/17)
Hilbert, D.: Grundzügeiner allgemeinen Theorie der linearen Integralgleichungen. Chelsea, New York (1953)
Hilbert, D.: Mathematical Problems. Göttinges Nachrichten, pp. 253–297 (1900)
Huang, F., Wang, Y., Yang, T.: Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Commun. Math. Phys. 295, 293–326 (2010)
Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Comm. Math. Phys. 308, 641–701 (2011)
Kim, C.: Boltzmann equation with a large external field. Commun. PDE 39, 1393–1423 (2014)
Kim, C., Lee, D.: Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains. Submitted (2017). arXiv:1702.03475
Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. (2016). https://doi.org/10.1002/cpa.21705
Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)
Lachowicz, M.: On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9(3), 27–70 (1987)
Leoni, G.: A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence (2009)
Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)
Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)
Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61, 119–148 (1978)
Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics, no. 1971. Springer, Berlin (2009)
Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston, MA (2007)
Speck, J., Strain, R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304, 229–280 (2011)
Wu, L.: Hydrodynamic limit with geometric correction of stationary Boltzmann equation. J Differ. Equ. 269, 7152–7249 (2016)
Wu, L., Guo, Y.: Geometric correction for diffusive expansion of steady neutron transport equation. Commun. Math. Phys. 336(3), 1473–1553 (2015)
Yu, S.-H.: Hydrodynamic limits with shock waves of the Boltzmann equation. Commun. Pure Appl. Math. 58, 409–443 (2005)
Acknowledgements
We thank Prof. Fujun Zhou for pointing out some inaccuracies in previous versions of this paper. Y. Guo’s research is supported in part by NSFC Grant 10828103, NSF Grant DMS-0905255, and BICMR. C. Kim’s research is supported in part by NSF DMS-1501031, KAIST-CMC, the Herchel Smith Foundation, and the University of Wisconsin-Madison Graduate School with funding from the Wisconsin Alumni Research Foundation. R. Marra is partially supported by MIUR-Prin.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A: Extensions and Compactness
Extension
Proof of Lemma 3.6
Step 1. In the sense of distributions on \([0, \infty )\times \Omega \times \mathbb {R}^{3}\),
Note that,
This proves the second line of (3.20). Since \(\big [1-\chi (\frac{ n(x) \cdot v}{\delta }) \chi ( \frac{\xi (x)}{\delta }) \big ] \chi (\delta |v|) \le 1\), we prove the first line of (3.20) directly.
Step 2. We claim that if \(0 \le \xi (x) \le {\tilde{C}} \delta ^{4}, \ |n(x) \cdot v|> \delta \) and \(|v| \le \frac{1}{\delta }\) then either \(\xi ({\tilde{x}}_{\mathbf {f}} (x,v))={\tilde{C}}\delta ^{4}\) or \(\xi ( {\tilde{x}}_{\mathbf {b}}(x,v)) ={\tilde{C}}\delta ^{4}\).
To show this, if \(v \cdot n(x) \ge \delta \), we take \(s>0\), while if \(v\cdot n(x) \le - \delta \) then we take \(s<0\). From (2.8),
From \(\xi (x)\ge 0\),
for \(0 \le |s| \le \frac{\delta ^{3}}{ 4(1+ \Vert \xi \Vert _{C^{2}})}\) and \(0< \varepsilon \ll 1\). Therefore
for all \(0\le |s| \le \frac{ \varepsilon \delta ^{3}}{ 4(1+ \Vert \xi \Vert _{C^{2}})}\) with \( 0< \varepsilon \ll 1\). Especially with \(\varepsilon s_{*} = +\frac{ \varepsilon \delta ^{3}}{4(1+ \Vert \xi \Vert _{C^{2}})}\) for \(n(x) \cdot v >\delta \) and \(\varepsilon s_{*} = -\frac{\varepsilon \delta ^{3} }{4(1+ \Vert \xi \Vert _{C^{2}})}\) for \(n(x) \cdot v <\delta \),
Therefore, by the intermediate value theorem, we prove our claim.
Step 3. We define \(f_{E}(t,x,v)\) for \((x,v) \in [ \mathbb { R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}\):
We check that \(f_{E}\) is well-defined. It suffices to prove the following:
If \(|n(x_{\mathbf {b}}^{*}(x,v)) \cdot v_{\mathbf {b}}^{*}(x,v)| \le \delta \) or \(|v_{\mathbf {b}}^{*}(x,v)| \ge \frac{1}{\delta }\) then \(f_{\delta }( t- \varepsilon t^{*}_{\mathbf {b}}(x,v), x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v))=0\) due to (3.12). If \(n(x_{\mathbf {b}}^{*}(x,v)) \cdot v_{ \mathbf {b}}^{*}(x,v) > \delta \) and \(|v_{\mathbf {b}}^{*}(x,v)|\le \frac{1}{ \delta }\) then, due to Step 2, \(\xi (x_{\mathbf {f}}^{*}(x,v)) = \xi ( x_{\mathbf {f}}^{*}( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v) ) ) = {\tilde{C}}\delta ^{4}\) so that \(x_{\mathbf {f}}^{*}(x,v) \notin \partial \Omega \).
On the other hand, if \(|n(x_{\mathbf {f}}^{*}(x,v)) \cdot v_{\mathbf {f} }^{*}(x,v)| \le \delta \) or \(|v_{\mathbf {f}}^{*}(x,v)|\ge \frac{1}{\delta }\) then \(f_{\delta }( t+ \varepsilon t^{*}_{\mathbf {f}}(x,v),x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v))=0\) due to (3.12). If \(n(x_{\mathbf {f} }^{*}(x,v)) \cdot v_{\mathbf {f}}^{*}(x,v) <-\delta \) and \(|v_{\mathbf {f} }^{*}(x,v)|\le \frac{1}{\delta }\) then, due to Step 2, \(\xi (x_{ \mathbf {b}}^{*}(x,v)) = \xi ( x_{\mathbf {b}}^{*}( x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v) ) ) = {\tilde{C}}\delta ^{4}\) so that \(x_{\mathbf {b} }^{*}(x,v) \notin \partial \Omega \).
Note that
If \(x \in \partial \Omega \) and \(n(x) \cdot v >\delta \) then \((x_{\mathbf {b} }^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) = (x,v)\). From the definition (A.1.4), for those (x, v), we have \(f_{E}(t,x,v) = f_{\delta } (t,x,v)\). If \(x \in \partial \Omega \) and \(n(x) \cdot v< -\delta \) then \((x_{\mathbf {f} }^{*}(x,v), v_{\mathbf {f}}^{*}(x.v)) = (x,v)\). From the definition (A.1.4), we conclude (A.1.5) again. Otherwise, if \(-\delta< n(x) \cdot v< \delta \) then \(f_{E}|_{\partial \Omega } \equiv 0 \equiv f_{\delta }|_{\partial \Omega }\).
Step 4. We claim that \(f_{E}(x,v) \in L^{2}([\mathbb {R} ^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3})\).
From the definition of (A.1.4), we have \(f_{E}(x,v) \equiv 0\) if \(x_{ \mathbf {b}}^{*} (x,v) \notin \partial \Omega \) and \(x_{\mathbf {f}}^{*} (x,v) \notin \partial \Omega \). Therefore, from (A.1.4),
where \((t^{*}_{\mathbf {b}},x^{*}_{\mathbf {b}},v^{*}_{\mathbf {b}} )\) and \( (t^{*}_{\mathbf {f}},x^{*}_{\mathbf {f}},v^{*}_{\mathbf {f}} )\) are evaluated at (x, v).
By (2.11),
where we have used the fact, from (3.11), \(O(\varepsilon )(1+|v|) |s| \le O(\varepsilon ) (1+ \frac{1}{\delta })\lesssim \delta \lesssim |n(x) \cdot v|\) for \((x,v) \in \text {supp} ( f_{\delta } )\), and, for \(n(x) \cdot v>0, x\in \partial \Omega \), and \(0 \le s \le t_{\mathbf {f}}^{*}(x,v)\),
and \(t_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)) =s\) and the change of variables \(t- \varepsilon s \mapsto t\). Similarly we can show (A.1.7) \(\lesssim \Vert f_{\delta } \Vert _{L^{2} (\mathbb {R} \times \partial \Omega \times \mathbb {R}^{3})}^{2}\).
Step 5. We claim that, in the sense of distributions on \( \mathbb {R} \times [\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }] \times \mathbb {R}^{3}\),
Note that
The underbraced terms vanish because \([ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t- \varepsilon t_{ \mathbf {b}}^{*} (x.v)) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon t_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v) )) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon s ) = - \varepsilon \), and \([ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t+ \varepsilon t_{\mathbf {f }}^{*} (x.v)) = \frac{d}{ds} \Big |_{s=0} (t+ \varepsilon t_{\mathbf {f}}^{*} (X(s;0,x,v), V(s;0,x,v) )) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon s + \varepsilon t_{ \mathbf {f}}^{*} (x,v)) = - \varepsilon \). Moreover, in the sense of distributions on \([\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }] \times \mathbb {R}^{3} \),
For \(\phi \in C_{c}^{\infty }( [\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{ \Omega }] \times \mathbb {R}^{3} )\), we choose small \(t>0\) such that \(X(s; 0, x,v) \in \Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }\) for all \(|s| \le t\) and all \((x,v) \in \text {supp}(\phi )\). Then, from (A.1.4), for \((X(s),V(s))= (X(s;0,x,v), V(s;0,x,v))\),
From \((x_{\mathbf {b}}^{*}(X(s;0,x,v),V(s;0,x,v)), v_{\mathbf {b} }^{*}(X(s;0,x,v),V(s;0,x,v)))= (x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v))\) and \((x_{\mathbf {f}}^{*}(X(s;0,x,v),V(s;0,x,v)), v_{\mathbf {f} }^{*}(X(s;0,x,v),V(s;0,x,v)))= (x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f} }^{*}(x,v))\) and \(t_{\mathbf {f}}^{*}(X(s;0,x,v),V(s;0,x,v) )=t_{\mathbf {f}}^{*}(x,v ) -s\) and \(t_{\mathbf {b}}^{*}(X(s;0,x,v),V(s;0,x,v) )=t_{\mathbf {b}}^{*}(x,v )+s\),
By the change of variables \((x,v) \mapsto (X(s; 0, x,v), V(s;0,x,v))\), for sufficiently small s,
Since the change of variables \((x,v) \mapsto (X(s; 0, x,v), V(s;0,x,v))\) has unit Jacobian, it follows that, for s sufficiently small,
and hence
Therefore we can move the s-derivative on \(f_E\): By (A.1.10),
From the change of variable \((X(s;0,x,v), V(s;0,x,v)) \mapsto (x,v)\),
Hence (A.1.8) is proved.
On the other hand, following the bounds of (A.1.6) and (A.1.7) in Step 4 we prove the third line of (3.20).
Step 6. We define \({\bar{f}}(t,x,v)\) for \((t,x,v) \in \mathbb {R} \times \mathbb {R}^{3} \times \mathbb {R}^{3}\):
For \(\phi \in C^{\infty }_{c}(\mathbb {R} \times \mathbb {R}^{3} \times \mathbb { R}^{3})\), by Lemma 3.3,
where the contributions of \(\{t= \infty \}\) and \(\{t= -\infty \}\) vanish since \(\phi (t) \in C_{c}^{\infty } (\mathbb {R})\).
From (A.1.5), the boundary contributions are cancelled:
Further from (A.1.1) and (A.1.8), we prove that \({\bar{f}}\) solves (3.13) in the sense of distributions on \(\mathbb {R} \times \mathbb {R}^{3} \times \mathbb {R}^{3}\). \(\square \)
Compactness of \(K\mathcal {L}^{-1}\)
Proof of Lemma 2.11
From Proposition 2.10, \(\mathcal {L}^{-1}\) maps \(L^{2}\) to \(L^{2}\) so that \(\sup _{n} \Vert f^{n}\Vert _{L^{2}} < +\infty \).
Step 1. We approximate K by a compactly supported smooth \(K_{N}\).
For any \(N\gg 1\), by the Hölder inequality,
where we have used the fact \(\int _{\mathbb {R}^{3}} \mathbf {k}(v,u) \mathrm {d} u \lesssim 1, \int _{\mathbb {R}^{3}} \mathbf {k}(v,u) \mathrm {d} v \lesssim 1 \), and \(\int _{\mathbb {R}^3}\frac{e^{-\beta |v|^{2}}}{|v|} \mathrm {1}_{|v| < \frac{1}{N}}=o(1)\).
Note that
and therefore \( \mathbf {k}_{i}(v,u) \mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \ge \frac{1}{N}\}}> \delta \) for \(0< \delta \ll 1\).
We now define \(K_{N} f:= \int \mathbf {k}_{N} f\) with
where \(\phi _{ \frac{1}{N}}\) is the standard mollifiers. In particular, for \( i=1,2\),
Consequently, \(\Vert K_{N } f- K f\Vert _{2} \lesssim o(1) \Vert f\Vert _{2}\).
We denote
Note that \(\mathbf {k}_{1,N}, \mathbf {k}_{2,N} \ge 0\) and hence \(\bar{ \mathbf {k}}_{N} \ge 0\) and \(\bar{\mathbf {k}}_{N} \ge | \mathbf {k}_{N}|\).
Step 2.
We fix \(\delta \ll 1\). Given \(f^n\), we define \(f_{\delta }^{n}\) as
and extend it to the whole space \(\mathbb {R}^{3} \times \mathbb {R}^{3}\). We follow the process in the proof of Lemma 3.6 and we only pinpoint the difference.
Similarly to Step 3 of the proof of Lemma 3.6, we define \(f_{E}^{n}(x,v)\) for \((x,v) \in [\mathbb {R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}\)
where \((X(\tau ), V(\tau )) = (X(\tau ; 0,x,v), V(\tau ;0,x,v))\).
Then
because, if \(x \in \partial \Omega \) and \(n(x) \cdot v>\delta \), then \(t_{ \mathbf {b}}^{*}(x,v)=0\). If \(x \in \partial \Omega \) and \(n(x) \cdot v<\delta \) then \(t_{\mathbf {f}}^{*}(x,v)=0\).
We define \({\bar{f}}^{n}(x,v)\) as
Note that \({\bar{f}}^{n}\) solves
where
and
Step 3. For \((x,v) \in \text {supp}({\bar{f}})\), we can choose a fixed \(T>0\) such that
so that
Directly,
We choose \(T= \frac{C}{\delta }\) for large but fixed \(C\gg 1\) such that \(| X( T;0,x,v) -x|\ge C - O(\frac{\varepsilon ^{2}}{\delta ^{2}}) \ge \frac{C}{2} \gg 1\). This proves our claim (A.2.6).
With this choice T,
By the averaging lemma [23], for any given v,
Since \({\bar{f}}^{n}\)’s support is bounded uniformly, by a diaganolization argument, it follows that there exists a weak limit \({\bar{f}}\in L^{2}\) of \( {\bar{f}}^{n}\) such that for any rational point v
Since \(\mathbf {k}_{N}(v,u)\) is smooth in v with compact support, we deduce (A.2.7) for all \(v \in \mathbb {R}^{3}.\)
Step 4. Finally,
From Step 3,
Note that
Hence, from (A.2.1),
We conclude the proof by choosing \(\delta \ll 1, \ 1 \ll N \) then letting \( n\rightarrow \infty \). \(\square \)
Appendix B: List of symbols
\(\Vert \cdot \Vert _p\) | the \(L^p(\bar{\Omega }\times \mathbb {R}^3)\) norm | |
\(\Vert \cdot \Vert _{L^{p}}\) | the \(L^p(\bar{\Omega } ) \) norm | |
\(\Vert \cdot \Vert _{L^{p}_y}\) | the \(L^p( \{ y \in Y\} ) \) norm | |
\(( \, \cdot \,,\, \cdot \, )\) | \(L^2(\bar{\Omega }\times \mathbb {R}^3)\) inner product or \(L^2( \mathbb {R}^3)\) inner product | |
\(\bar{\Omega }\) | \(\Omega \cup \partial \Omega \) | |
\(\Vert \cdot \Vert _{\nu }\) | \(\Vert \nu ^{1/2}\cdot \Vert _2\) | |
\(W^{k,p}\) | Sobolev space | |
\(H^k\) | a Sobolev space \(W^{k,p}\) with \(p=2\) | |
\(\Vert \cdot \Vert _{L^{p}L^{q}}\) | a norm of \( \Vert \cdot \Vert _{L^{p}(L^{q})} \) which equals \( \big \Vert \Vert \cdot \Vert _{L^{q}} \big \Vert _{L^{p}}\) | |
\(\mathrm {d} \gamma \) | \(|n(x)\cdot v|\mathrm {d} S(x)\mathrm {d} v\) with \(\mathrm {d} S(x)\) the surface measure of \(\partial \Omega \) | |
\(L^p(\partial \Omega \times \mathbb {R}^3)\) | \(L^p\)-norm on \(\partial \Omega \times \mathbb {R}^3\) with a measure \(\mathrm {d}\gamma \) | |
\(|f|_p^p\) | \(\int _{\gamma } |f(x,v)|^p \mathrm {d}\gamma \) or \(\int _{\partial \Omega } |f(x)|^p \mathrm {d} S(x)\) | |
\(f_\gamma , f_\pm \) | a trace of f on \(\gamma \), a trace of f on \(\gamma _\pm \) | |
\(|f|_{p,\pm }\) | \(|f \mathbf {1}_{\gamma _{\pm }}|_p\) | |
\(X \lesssim _\alpha Y\) | \(X \le C_\alpha Y\) where \(C_\alpha \) only depends a parameter \(\alpha \) | |
\(X \ll _{a} Y\) | \(X\le C_{a} Y\) where \(C_{a}>0\) is sufficiently small | |
\(0+\) | Some positive number \(\delta >0\) without specifying the size | |
\(\vec {G}\) | A force field | (1.1) |
\(\Phi \) | A force field | (1.9) |
\(M_w\) | A wall Maxwellian | (1.3) |
\(\mathcal {P}^w_\gamma \) | The diffuse reflection boundary operator | (1.5) |
\(\mu \) | The global Maxwellian | (1.8) |
\(T_w\) | A wall temperature | (1.9) |
\(\vartheta _w\) | An \(\varepsilon \)-order variation of the wall temperature around 1 | (1.9) |
\(\Theta _w\) | An extension of \(\vartheta _w\) in \(\Omega \) | (1.10) |
\(\rho _w\) | A function defined in (1.11) | (1.11) |
\(f_w\) | A correction term at the boundary | (1.11) |
\(\mathbf {P}\) | A \(L^2_v\)-projection on the null space of L | |
a, b, c, | Coefficients of \(\mathbf {P}\) | (1.19) |
\(\mathbf {I} -\mathbf {P}\) | \((\mathbf {I} -\mathbf {P}) f := f -\mathbf {P}f\) |
\(\mathfrak {M}\) | Mach number | |
\(\varphi _\varepsilon \) | A correction on the boundary | (1.22) |
r | \(\mu ^{-1/2} \mathcal {P}^w_\gamma \big (\sqrt{\mu }\varphi _{\varepsilon } \big )-\varphi _{\varepsilon }\) | (1.25) |
\(P_\gamma f \) | \(\sqrt{2\pi }\sqrt{\mu (v)} \int _{n(x)\cdot u>0} f(u) \sqrt{ \mu (u)} \{n(x) \cdot u\} \mathrm {d} u\) | (1.26) |
\(\mathcal {Q}\) | \(\varepsilon ^{-1}\big [\mu ^{-1/2} \mathcal {P}^w_\gamma ( \sqrt{\mu } f) -{P}_\gamma f\big ]\) | (1.27) |
\(f_s\) | An \(\varepsilon \)-order correction of steady solutions substracted \(f_w\) | (1.32) |
\(L_1, A_s\) | ||
\(L^{-1}\) | \(L^{-1}\) is an inverse with \(\mathbf {P}L^{-1} \equiv 0\) | |
w(v) | \(e^{\beta |v|^2}\) with \(0< \beta \ll 1\) | Theorem 1.1 |
\(g_1, g_2\) | Defined in (1.41) | |
\({\tilde{f}}\) | An unsteady perturbation around steady solutions | (1.48) |
\(L_\phi \) | \(L_\phi \psi : = - [\Gamma (\phi , \psi ) + \Gamma (\psi ,\phi )]\) | |
\(\mathcal {E}_{\lambda }[\cdot ](t)\) | An energy term in \(L^2\) energy estimate | (1.53) |
\(\mathcal {D}_{\lambda }[\cdot ](t)\) | A dissipation term in \(L^2\) energy estimate | (1.54) |
\(\xi \) | A function defined in (2.3) | (2.3) |
n(x) | The outward normal at \(x \in \partial \Omega \) | (2.5) |
\(t_{\mathbf {b}}, x_{\mathbf {b}}\) | A backward exit time, a backward exit point | (2.9) |
\(t_{\mathbf {f}}, x_{\mathbf {f}}\) | A forward exit time, a forward exit point | (2.10) |
\(t_i (t, \ldots , v_{i-1})\) | i-th backward exit time | Definition 2.7 |
\(X_\mathbf {cl}, V_\mathbf {cl}\) | A stochastic trajectory | Definition 2.7 |
\(\gamma ^\delta _\pm \) | Non-grazing phase boundary | (2.15) |
\(\llbracket \cdot \rrbracket \) | A closing norm for the steady case | (2.20) |
\(\mathbf {k}_\beta \) | A function defined in (2.26) | (2.26) |
\(K_\beta \) | \(K_\beta g := \int _{\mathbb {R}^3} \mathbf {k}_\beta (v,u) g(u) \mathrm {d}u\) | |
\(\beta ^\prime \) | A number \(0< \beta ^\prime \ll \beta \) | Proposition 2.6 |
\(\mathcal {V}(x), \mathcal {V}_j\) | velocity sections of \(\gamma _+\) | |
\(\mathrm {d}\sigma , \mathrm {d}\sigma _j\) | Measures defined on the velocity sections of \(\mathcal {V}(x), \mathcal {V}_j\) | (2.28) |
\({\tilde{w}}\) | \(w^{-1} \mu ^{-1/2}\) | (2.35) |
\(\mathrm {d}\Sigma _l\) | a stochastic measure | (2.46) |
Y, W | Scaled trajectory for the dynamic problem | (3.2) |
\({\tilde{t}}_\mathbf {b}, {\tilde{x}}_\mathbf {b}\) | Scaled backward exit time and position | (3.4) |
\({\tilde{t}}_\mathbf {f}, {\tilde{x}}_\mathbf {f}\) | Scaled forward exit time and position | (3.4) |
\(f_\delta \) | An interior and non-grazing parts of f | (3.11) |
\(f_{la}, f_{sm}\) | Functions defined in (3.22) | |
\(\mathbf {S}_i f\) | ||
\([[[ \cdot ]]] \) | A closing norm for the unsteady case | (3.93) |
\(\overline{f_{\delta }}\) | Defined in (A.1.12) |
Rights and permissions
About this article
Cite this article
Esposito, R., Guo, Y., Kim, C. et al. Stationary Solutions to the Boltzmann Equation in the Hydrodynamic Limit. Ann. PDE 4, 1 (2018). https://doi.org/10.1007/s40818-017-0037-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s40818-017-0037-5