Skip to main content
Log in

Stationary Solutions to the Boltzmann Equation in the Hydrodynamic Limit

  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

Despite its conceptual and practical importance, a rigorous derivation of the steady incompressible Navier–Stokes–Fourier system from the Boltzmann theory has been an outstanding open problem for general domains in 3D. We settle this open question in the affirmative, in the presence of a small external field and a small boundary temperature variation for the diffuse boundary condition. We employ a recent quantitative \(L^{2}\)\(L^{\infty }\) approach with new \(L^{{6}}\) estimates for the hydrodynamic part \(\mathbf {P}f\) of the distribution function. Our results also imply the validity of Fourier law in the hydrodynamical limit, and our method leads to an asymptotical stability of steady Boltzmann solutions as well as the derivation of the unsteady Navier–Stokes–Fourier system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Stability for Rayleigh–Benard convective solutions of the Boltzmann equation. Arch. Ration. Mech. Anal. 198(1), 125–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkeryd, L., Esposito, R., Marra, R., Nouri, A.: Ghost effect by curvature in planar Couette flow. Kinet. Relat. Models. 4(1), 109–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkeryd, L., Nouri, A.: \(L^1\) solutions to the stationary Boltzmann equation in a slab. Ann. Fac. Sci. Toulouse Math. (6) 9(3), 375–413 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asano, K., Ukai, S.: The Euler limit and the initial layer of the nonlinear Boltzmann equation. Hokkaido Math. J. 12, 303–324 (1983)

    MathSciNet  MATH  Google Scholar 

  5. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  ADS  MATH  Google Scholar 

  6. Bardos, C., Golse, F., Levermore, D.: Fluid dynamical limits of kinetic equations, II: convergence proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46, 667–753 (1993)

    Article  MATH  Google Scholar 

  7. Bardos, C., Golse, F., Levermore, D.: Acoustic and Stokes limits for the Boltzmann equation. C. R. Acad. Sci. Paris Ser. 1 Math. 327, 323–328 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardos, C., Golse, F., Levermore, D.: The acoustic limit for the Boltzmann equation. Arch. Ration. Mech. Anal. 153, 177–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardos, C., Ukai, S.: The classical incompressible Navier–Stokes limit of the Boltzmann equation. Math. Mod. Meth. Appl. Sci. 1, 235 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bensoussan, A., Lions, J.-L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15, 53–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobylev, A.V., Mossberg, E.: On some properties of linear and linearized Boltzmann collision operators for hard spheres. Kinet. Relat. Models 1, 521–555 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caflisch, R.E.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math. 33, 651–666 (1980)

    Article  ADS  MATH  Google Scholar 

  13. Cao, Y., Kim, C., Lee, D.: Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains. Submitted (2017). arXiv:1710.03851

  14. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1994)

    Book  MATH  Google Scholar 

  15. De Masi, A., Esposito, R., Lebowitz, J.L.: Incompressible Navier–Stokes and Euler Limits of the Boltzmann Equation. Commun. Pure Appl. Math. 42, 1189–1214 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. DiPerna, R.J., Lions, P.L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323, 177–239 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Esposito, R., Lebowitz, J.L., Marra, R.: Hydrodynamic limit of the stationary Boltzmann equation in a slab. Commun. Math. Phys. 160, 49–80 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Esposito, R., Lebowitz, J.L., Marra, R.: The Navier-Stokes limit of stationary solutions of the nonlinear Boltzmann equation. J. Stat. Phys. 78, 389–412 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Esposito, R., Lebowitz, J.L., Marra, R.: Solutions to the Boltzmann equation in the Boussinesq regime. J. Stat. Phys. 90, 1129–1178 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gérard, P., Golse, F.: Averaging regularity results for PDEs under transversality assumptions. Commun. Pure Appl. Math. XLV, 1–26 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golse, F.: Hydrodynamic limits, European Congress of Mathematics, pp. 699–717. Eur. Math. Soc, Zürich (2005)

  23. Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76, 110–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Golse, F., Saint-Raymond, L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155, 81–161 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  26. Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann linéaire. J. Méc. 9, 183–231 (1970)

    MATH  Google Scholar 

  27. Guiraud, J.P.: Probleme aux limites intérieur pour l’équation de Boltzmann en régime stationnaire, faiblement non linéaire. J. Méc. 11, 443–490 (1972)

    MATH  Google Scholar 

  28. Guo, Y.: The Vlasov–Poisson–Boltzmann system near Maxwellians. Commun. Pure Appl. Math. 55, 1104–1135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153, 593–630 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Guo, Y.: Boltzmann diffusive limit beyond the Navier–Stokes approximation. Commun. Pure Appl. Math. 59, 626–687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197, 713–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Guo, Y., Jang, J.: Global Hilbert expansion for the Vlasov–Poisson–Boltzmann system. Commun. Math. Phys. 299, 469–501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Guo, Y., Jang, J., Jiang, N.: Acoustic limit for the Boltzmann equation in optimal scaling. Commun. Pure Appl. Math. 63, 337–361 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains, Invent. Math. 207(1), 115–290 (2017)

  35. Guo, Y., Kim, C., Tonon, D., Trescases, A.: BV regularity of the Boltzmann equation in non-convex domains. Arch. Ration. Mech. Anal. 220(3), 1045–1093 (2016)

  36. Hilbert, D.: Begründung der kinetischen Gastheorie. Math. Ann. 72, 331–407 (1916/17)

  37. Hilbert, D.: Grundzügeiner allgemeinen Theorie der linearen Integralgleichungen. Chelsea, New York (1953)

    MATH  Google Scholar 

  38. Hilbert, D.: Mathematical Problems. Göttinges Nachrichten, pp. 253–297 (1900)

  39. Huang, F., Wang, Y., Yang, T.: Hydrodynamic limit of the Boltzmann equation with contact discontinuities. Commun. Math. Phys. 295, 293–326 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kim, C.: Formation and propagation of discontinuity for Boltzmann equation in non-convex domains. Comm. Math. Phys. 308, 641–701 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Kim, C.: Boltzmann equation with a large external field. Commun. PDE 39, 1393–1423 (2014)

    Article  MATH  Google Scholar 

  42. Kim, C., Lee, D.: Decay of the Boltzmann equation with the specular boundary condition in non-convex cylindrical domains. Submitted (2017). arXiv:1702.03475

  43. Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. (2016). https://doi.org/10.1002/cpa.21705

  44. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, vol. 96. American Mathematical Society, Providence (2008)

    Book  Google Scholar 

  45. Lachowicz, M.: On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9(3), 27–70 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Leoni, G.: A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  47. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)

  48. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes–Fourier system in a bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61, 119–148 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Saint-Raymond, L.: Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics, no. 1971. Springer, Berlin (2009)

  51. Sone, Y.: Molecular gas dynamics. Theory, techniques, and applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston, Inc., Boston, MA (2007)

  52. Speck, J., Strain, R.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304, 229–280 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Wu, L.: Hydrodynamic limit with geometric correction of stationary Boltzmann equation. J Differ. Equ. 269, 7152–7249 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Wu, L., Guo, Y.: Geometric correction for diffusive expansion of steady neutron transport equation. Commun. Math. Phys. 336(3), 1473–1553 (2015)

  55. Yu, S.-H.: Hydrodynamic limits with shock waves of the Boltzmann equation. Commun. Pure Appl. Math. 58, 409–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Prof. Fujun Zhou for pointing out some inaccuracies in previous versions of this paper. Y. Guo’s research is supported in part by NSFC Grant 10828103, NSF Grant DMS-0905255, and BICMR. C. Kim’s research is supported in part by NSF DMS-1501031, KAIST-CMC, the Herchel Smith Foundation, and the University of Wisconsin-Madison Graduate School with funding from the Wisconsin Alumni Research Foundation. R. Marra is partially supported by MIUR-Prin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanwoo Kim.

Appendices

Appendix A: Extensions and Compactness

Extension

Proof of Lemma 3.6

Step 1. In the sense of distributions on \([0, \infty )\times \Omega \times \mathbb {R}^{3}\),

$$\begin{aligned}&\varepsilon \partial _{t} f_{\delta }+ v\cdot \nabla _{x} f_{\delta } + \varepsilon ^{2} \Phi \cdot \nabla _{v} f_{\delta } \nonumber \\&\quad = \left[ 1-\chi \left( \frac{n(x) \cdot v}{\delta }\right) \chi \left( \frac{ \xi (x) }{ \delta }\right) \right] \chi (\delta |v|) \nonumber \\&\qquad \times \,\left[ \mathbf {1}_{t \in [0,\infty )} g + \mathbf {1} _{t \in ( - \infty , 0 ]} \chi (t) \left\{ \varepsilon \frac{\chi ^{\prime } (t)}{ \chi (t)} + v \cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \right\} f_{0} (x,v)\right] \nonumber \\&\qquad + \big [\mathbf {1}_{t \in [0,\infty )} f + \mathbf {1}_{t \in (- \infty , 0 ]} \chi (t) f_{0} (x,v) \big ] \{v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v}\}\nonumber \\&\qquad \times \, \left( \left[ 1-\chi (\frac{n(x) \cdot v}{\delta }) \chi \left( \frac{\xi (x)}{\delta }\right) \right] \chi (\delta |v|)\right) . \end{aligned}$$
(A.1.1)

Note that,

$$\begin{aligned}&\Big |\{v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v}\} \big [1-\chi \big (\frac{ n(x) \cdot v}{\delta }\big ) \chi \big ( \frac{ \xi (x )}{\delta }\big ) \big ] \chi (\delta |v|)\Big | \nonumber \\&\quad =\Big | - \frac{1}{\delta } \{v\cdot \nabla _{x} n(x) \cdot v + \varepsilon ^{2} \Phi \cdot n(x) \} \chi ^{\prime } \big (\frac{n(x) \cdot v}{\delta } \big ) \chi \big ( \frac{ \xi (x )}{\delta }\big ) \chi (\delta |v|) \nonumber \\&\qquad - \ \frac{1}{\delta } v\cdot \nabla _{x} \xi (x) \chi ^{\prime } \big ( \frac{ \xi (x)}{\delta }\big ) \chi \big (\frac{n(x) \cdot v}{\delta }\big ) \chi (\delta |v|) \nonumber \\&\qquad +\, \varepsilon ^{2}\delta \Phi \cdot \frac{v}{|v|} \chi ^{\prime } (\delta |v|)\Big [1-\chi \Big (\frac{ n(x) \cdot v}{\delta }\Big ) \chi \big ( \frac{\xi (x)}{\delta }\big ) \Big ] \Big | \nonumber \\&\quad \le \frac{4}{\delta }( |v|^{2}\Vert \xi \Vert _{C^2} + \varepsilon ^{2}\Vert \Phi \Vert _\infty ) \chi (\delta |v|) + \frac{C_{\Omega }}{\delta } |v|\chi (\delta |v|) + \varepsilon ^{2} \delta \Vert \Phi \Vert _\infty \mathbf {1}_{|v| \le {2}{\delta }^{-1}} \nonumber \\&\quad \lesssim {\delta ^{-3}} \mathbf {1}_{|v| \le 2 \delta ^{-1}}. \end{aligned}$$
(A.1.2)

This proves the second line of (3.20). Since \(\big [1-\chi (\frac{ n(x) \cdot v}{\delta }) \chi ( \frac{\xi (x)}{\delta }) \big ] \chi (\delta |v|) \le 1\), we prove the first line of (3.20) directly.

Step 2. We claim that if \(0 \le \xi (x) \le {\tilde{C}} \delta ^{4}, \ |n(x) \cdot v|> \delta \) and \(|v| \le \frac{1}{\delta }\) then either \(\xi ({\tilde{x}}_{\mathbf {f}} (x,v))={\tilde{C}}\delta ^{4}\) or \(\xi ( {\tilde{x}}_{\mathbf {b}}(x,v)) ={\tilde{C}}\delta ^{4}\).

To show this, if \(v \cdot n(x) \ge \delta \), we take \(s>0\), while if \(v\cdot n(x) \le - \delta \) then we take \(s<0\). From (2.8),

$$\begin{aligned}&\xi (X(s; 0, x, v) ) = \xi (x) + \int _{0}^{s} V( \tau ; 0, x, v) \cdot \nabla _{x} \xi ( X( \tau ; 0, x, v) ) \mathrm {d}\tau \\&\quad =\xi (x) + \int ^{s}_{0} \{ v+ O(1)\varepsilon ^{2} \Vert \Phi \Vert _{\infty } \tau \} \cdot \{ \nabla _{x} \xi (x) + O(1)\Vert \xi \Vert _{C^{2}} (|v| + \varepsilon ^{2} \Vert \Phi \Vert _{\infty }\tau ) \tau \} \\&\quad =\xi (x) + v \cdot \nabla _{x} \xi (x) s +O(1) \Vert \xi \Vert _{C^{2}} \big \{ |v|^{2} s^{2} + \varepsilon ^{2} \Vert \Phi \Vert _{\infty } s ^{2} \\&\qquad +\, \varepsilon ^{2} \Vert \Phi \Vert _{\infty }|v|s^{3} + \varepsilon ^{4} \Vert \Phi \Vert _{\infty }^{2} s^{4} \big \}. \end{aligned}$$

From \(\xi (x)\ge 0\),

$$\begin{aligned} \xi (X(s; 0, x, v) )\ge & {} \delta |s| \Big \{ 1 - \frac{ \Vert \xi \Vert _{C^{2}} }{ \delta }\Big [ |v|^{2} |s| + \varepsilon ^{2} \Vert \Phi \Vert _{\infty } |s| + \varepsilon ^{2} \Vert \Phi \Vert _{\infty }|v\Vert s|^{2} \nonumber \\&\quad +\, \varepsilon ^{4} \Vert \Phi \Vert _{\infty }^{2} |s|^{3} \Big ] \Big \} \nonumber \\\ge & {} \delta |s| \Big \{ 1 - \frac{ \Vert \xi \Vert _{C^{2}} }{\delta }\Big [\frac{1}{ \delta ^{2}} |s| + \varepsilon ^{2} \Vert \Phi \Vert _{\infty } | s| + \varepsilon ^{2} \Vert \Phi \Vert _{\infty } \frac{1}{\delta }|s|^{2}\nonumber \\&\quad +\, \varepsilon ^{4} \Vert \Phi \Vert _{\infty }^{2} |s|^{3} \Big ] \Big \} \nonumber \\\ge & {} \delta |s| \Big \{ 1- \Big [ \frac{1}{4} + \frac{ \varepsilon ^{2} \delta ^{2} \Vert \Phi \Vert _{\infty }}{4 } + \frac{\varepsilon ^{2} \delta ^{4} \Vert \Phi \Vert _{\infty }}{16} \nonumber \\&\quad +\, \frac{\varepsilon ^{4}\delta ^{8} \Vert \Phi \Vert _{\infty }^{2}}{64} \Big ] \Big \} \ \ge \ \frac{\delta |s| }{2}, \end{aligned}$$
(A.1.3)

for \(0 \le |s| \le \frac{\delta ^{3}}{ 4(1+ \Vert \xi \Vert _{C^{2}})}\) and \(0< \varepsilon \ll 1\). Therefore

$$\begin{aligned} \xi (Y(s;0,x,v)) = \xi \left( X\left( \frac{s}{\varepsilon }; 0,x,v \right) \right) \ge \delta \frac{|s|}{2\varepsilon }, \end{aligned}$$

for all \(0\le |s| \le \frac{ \varepsilon \delta ^{3}}{ 4(1+ \Vert \xi \Vert _{C^{2}})}\) with \( 0< \varepsilon \ll 1\). Especially with \(\varepsilon s_{*} = +\frac{ \varepsilon \delta ^{3}}{4(1+ \Vert \xi \Vert _{C^{2}})}\) for \(n(x) \cdot v >\delta \) and \(\varepsilon s_{*} = -\frac{\varepsilon \delta ^{3} }{4(1+ \Vert \xi \Vert _{C^{2}})}\) for \(n(x) \cdot v <\delta \),

$$\begin{aligned} \xi (Y(s_{*};0,x,v)) > {\tilde{C}} \delta ^{4}. \end{aligned}$$

Therefore, by the intermediate value theorem, we prove our claim.

Step 3. We define \(f_{E}(t,x,v)\) for \((x,v) \in [ \mathbb { R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}\):

$$\begin{aligned} \begin{aligned} f_{E}(t,x,v)&\ := \ f_{\delta }(t- \varepsilon t_{\mathbf {b}}^{*}(x,v),x_{\mathbf {b} }^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi \big ( {t_{\mathbf {b}}^{*} (x,v)} \big ) \\&\qquad \text {if} \ \ x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega , \\&\ := \ f_{\delta }(t+ \varepsilon t_{\mathbf {f}}^{*}(x,v),x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi \big ( {t_{\mathbf {f}}^{*} (x,v)} \big ) \\&\qquad \text {if} \ \ x_{\mathbf { f}}^{*}(x,v) \in \partial \Omega , \\&\ := \ 0 \qquad \ \ \ \ \ \text {if} \ \ x_{\mathbf {b}}^{*}(x,v) \notin \partial \Omega \ \text {and} \ x_{\mathbf {f}}^{*}(x,v) \notin \partial \Omega . \end{aligned} \end{aligned}$$
(A.1.4)

We check that \(f_{E}\) is well-defined. It suffices to prove the following:

$$\begin{aligned} \begin{aligned}&\text {If} \ \ x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega \text { and } x_{ \mathbf {f}}^{*}(x,v) \in \partial \Omega \\&\ \text {then} \ \ f_{\delta }( t- \varepsilon t_{\mathbf {b}}^{*} (x,v), x_{\mathbf {b} }^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) = 0 \\&\quad = f_{\delta }( t+ \varepsilon t_{\mathbf {f}}^{*} (x,v), x_{ \mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{ {\tilde{C}} \delta ^{4}} \big ). \end{aligned} \end{aligned}$$

If \(|n(x_{\mathbf {b}}^{*}(x,v)) \cdot v_{\mathbf {b}}^{*}(x,v)| \le \delta \) or \(|v_{\mathbf {b}}^{*}(x,v)| \ge \frac{1}{\delta }\) then \(f_{\delta }( t- \varepsilon t^{*}_{\mathbf {b}}(x,v), x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v))=0\) due to (3.12). If \(n(x_{\mathbf {b}}^{*}(x,v)) \cdot v_{ \mathbf {b}}^{*}(x,v) > \delta \) and \(|v_{\mathbf {b}}^{*}(x,v)|\le \frac{1}{ \delta }\) then, due to Step 2, \(\xi (x_{\mathbf {f}}^{*}(x,v)) = \xi ( x_{\mathbf {f}}^{*}( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v) ) ) = {\tilde{C}}\delta ^{4}\) so that \(x_{\mathbf {f}}^{*}(x,v) \notin \partial \Omega \).

On the other hand, if \(|n(x_{\mathbf {f}}^{*}(x,v)) \cdot v_{\mathbf {f} }^{*}(x,v)| \le \delta \) or \(|v_{\mathbf {f}}^{*}(x,v)|\ge \frac{1}{\delta }\) then \(f_{\delta }( t+ \varepsilon t^{*}_{\mathbf {f}}(x,v),x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v))=0\) due to (3.12). If \(n(x_{\mathbf {f} }^{*}(x,v)) \cdot v_{\mathbf {f}}^{*}(x,v) <-\delta \) and \(|v_{\mathbf {f} }^{*}(x,v)|\le \frac{1}{\delta }\) then, due to Step 2, \(\xi (x_{ \mathbf {b}}^{*}(x,v)) = \xi ( x_{\mathbf {b}}^{*}( x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v) ) ) = {\tilde{C}}\delta ^{4}\) so that \(x_{\mathbf {b} }^{*}(x,v) \notin \partial \Omega \).

Note that

$$\begin{aligned} f_{E}(t,x,v) = f_{\delta } (t,x,v) \ \ \ \text {for all } x \in \partial \Omega . \end{aligned}$$
(A.1.5)

If \(x \in \partial \Omega \) and \(n(x) \cdot v >\delta \) then \((x_{\mathbf {b} }^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) = (x,v)\). From the definition (A.1.4), for those (xv), we have \(f_{E}(t,x,v) = f_{\delta } (t,x,v)\). If \(x \in \partial \Omega \) and \(n(x) \cdot v< -\delta \) then \((x_{\mathbf {f} }^{*}(x,v), v_{\mathbf {f}}^{*}(x.v)) = (x,v)\). From the definition (A.1.4), we conclude (A.1.5) again. Otherwise, if \(-\delta< n(x) \cdot v< \delta \) then \(f_{E}|_{\partial \Omega } \equiv 0 \equiv f_{\delta }|_{\partial \Omega }\).

Step 4. We claim that \(f_{E}(x,v) \in L^{2}([\mathbb {R} ^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3})\).

From the definition of (A.1.4), we have \(f_{E}(x,v) \equiv 0\) if \(x_{ \mathbf {b}}^{*} (x,v) \notin \partial \Omega \) and \(x_{\mathbf {f}}^{*} (x,v) \notin \partial \Omega \). Therefore, from (A.1.4),

$$\begin{aligned}&\int _{-\infty }^{\infty } \iint _{[ \mathbb {R}^{3 } \backslash \Omega ]\times \mathbb {R}^{3}} |f_{E} (t,x,v)|^{2} \mathrm {d} x \mathrm {d} v \mathrm {d} t\nonumber \\&\quad =\int _{-\infty }^{\infty } \iint _{ [ \mathbb {R}^{3 } \backslash \Omega ] \times \mathbb {R}^{3}} \mathbf {1}_{x_{\mathbf {b}}^{*} (x,v) \in \partial \Omega } |f_{E} |^{2} + \int _{-\infty }^{\infty } \iint _{ [ \mathbb {R} ^{3 } \backslash \Omega ] \times \mathbb {R}^{3}} \mathbf {1}_{x_{\mathbf {f} }^{*} \in \partial \Omega } |f_{E} |^{2} \nonumber \\&\quad = \int _{-\infty }^{\infty } \iint _{ [ \mathbb {R}^{3 } \backslash \Omega ]\times \mathbb {R}^{3}} \mathbf {1}_{x_{\mathbf {b}}^{*} (x,v) \in \partial \Omega } |f_{\delta } ( t- \varepsilon t^{*}_{\mathbf {b}}, x_{\mathbf {b}}^{*} , v_{\mathbf {b}}^{*} )|^{2} \nonumber \\&\qquad \times \,\big | \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \big |^{2} |\chi ( {t_{\mathbf {b}}^{*} } ) |^{2}\mathrm {d} x \mathrm {d} v \mathrm {d} t \end{aligned}$$
(A.1.6)
$$\begin{aligned}&\qquad + \int _{-\infty }^{\infty } \iint _{ [ \mathbb {R}^{3 } \backslash \Omega ] \times \mathbb {R}^{3}} \mathbf {1}_{x_{\mathbf {f}}^{*} (x,v) \in \partial \Omega } |f_{\delta } ( t+ \varepsilon t^{*}_{\mathbf {f}}, x_{\mathbf {f}}^{*}, v_{\mathbf {f}}^{*} )|^{2} \nonumber \\&\qquad \times \,\big | \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \big |^{2} |\chi ( {t_{\mathbf {f}}^{*} } ) |^{2} \mathrm {d} x \mathrm {d} v \mathrm {d} t, \end{aligned}$$
(A.1.7)

where \((t^{*}_{\mathbf {b}},x^{*}_{\mathbf {b}},v^{*}_{\mathbf {b}} )\) and \( (t^{*}_{\mathbf {f}},x^{*}_{\mathbf {f}},v^{*}_{\mathbf {f}} )\) are evaluated at (xv).

By (2.11),

$$\begin{aligned} (A.1.6)\le & {} \int ^{\infty }_{- \infty } \mathrm {d} t \int _{\partial \Omega } \int _{n(x) \cdot v>0} \int _{0}^{ \min \{ t_{\mathbf {f} }^{*}(x,v), 1 \}}\mathrm {d} S_{x} \mathrm {d} v \mathrm {d} s \{|n(x) \cdot v| + O(\varepsilon )(1+ |v|)s \} \\&\times \big | f_{\delta } \big ( t- \varepsilon s, x_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)),\\&\times v_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)) \big )\big |^{2} \\\le & {} \int ^{\infty }_{-\infty }\mathrm {d} t \int _{\partial \Omega } \int _{n(x) \cdot v>0} \int _{0}^{ 1} \big | f_{\delta } (t,x,v ) \big |^{2} \{|n(x) \cdot v| + O(\varepsilon )(1+ |v|)s \} \mathrm {d} s \mathrm {d} v \mathrm {d} S_{x} \\\lesssim & {} \int _{-\infty }^{\infty } \mathrm {d} t \int _{\partial \Omega } \int _{n(x) \cdot v >0} \big | f_{\delta } (t,x,v ) \big |^{2} |n(x) \cdot v| \mathrm {d} v \mathrm {d} S_{x} \lesssim \Vert f_{\delta } \Vert _{L^{2} (\mathbb {R} \times \partial \Omega \times \mathbb {R}^{3})}^{2}, \end{aligned}$$

where we have used the fact, from (3.11), \(O(\varepsilon )(1+|v|) |s| \le O(\varepsilon ) (1+ \frac{1}{\delta })\lesssim \delta \lesssim |n(x) \cdot v|\) for \((x,v) \in \text {supp} ( f_{\delta } )\), and, for \(n(x) \cdot v>0, x\in \partial \Omega \), and \(0 \le s \le t_{\mathbf {f}}^{*}(x,v)\),

$$\begin{aligned}&(x_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)), v_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)) )\\&\quad = (x_{\mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*} (x,v) ) = (x,v), \end{aligned}$$

and \(t_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v)) =s\) and the change of variables \(t- \varepsilon s \mapsto t\). Similarly we can show (A.1.7) \(\lesssim \Vert f_{\delta } \Vert _{L^{2} (\mathbb {R} \times \partial \Omega \times \mathbb {R}^{3})}^{2}\).

Step 5. We claim that, in the sense of distributions on \( \mathbb {R} \times [\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }] \times \mathbb {R}^{3}\),

$$\begin{aligned}&\varepsilon \partial _{t } f_{E}+ v\cdot \nabla _{x} f_{E} + \varepsilon ^{2} \Phi \cdot \nabla _{v} f_{E} \nonumber \\&\quad = \ \frac{1}{{\tilde{C}} \delta ^{4}}v \cdot \nabla _{x} \xi (x) \chi ^{\prime } \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \Big [ f_{\delta }( t- \varepsilon t_{\mathbf {b}}^{*} (x,v), x_{\mathbf {b}}^{*}(x,v), v_{ \mathbf {b}}^{*}(x,v) ) \chi (t_{\mathbf {b}}^{*} (x,v))\nonumber \\&\qquad \times \,\mathbf {1}_{x_{\mathbf {b }}^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad +\, f_{\delta }( t+ \varepsilon t_{\mathbf {f}}^{*} (x,v), x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v) ) \chi (t_{\mathbf {f}}^{*} (x,v)) \mathbf {1}_{x_{\mathbf { f}}^{*}(x,v) \in \partial \Omega } \Big ] \nonumber \\&\qquad +\, f_{\delta }( t- \varepsilon t_{\mathbf {b}}^{*}(x,v), x_{\mathbf {b}}^{*} (x,v), v_{ \mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime } (t_{\mathbf {b}}^{*}(x,v))\mathbf {1}_{x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad -\, f_{\delta }( t+ \varepsilon t_{\mathbf {f}}^{*} (x,v), x_{\mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime } (t_{\mathbf {f}}^{*}(x,v))\mathbf {1}_{x_{\mathbf {f} }^{*}(x,v) \in \partial \Omega }.\nonumber \\ \end{aligned}$$
(A.1.8)

Note that

$$\begin{aligned}&[ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ]f(t- \varepsilon t_{\mathbf {b}}^{*} (x,v), x_{\mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*}(x,v)) \\&\quad = \underbrace{ [ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t-\varepsilon t_{\mathbf {b}}^{*} (x,v)) } \\&\qquad \times \, \partial _{t} f(t- \varepsilon t_{\mathbf {b}}^{*} (x,v), x_{\mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*} (x,v)) \\&\qquad +\, [ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] f(s, x_{ \mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*} (x,v)) |_{s= t- \varepsilon t_{\mathbf {b} }^{*} (x,v)}, \\&[ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ]f(t+ \varepsilon t_{\mathbf {f}}^{*} (x,v), x_{\mathbf {f}}^{*} (x,v), v_{\mathbf {f}}^{*} (x,v)) \\&\quad = \underbrace{ [ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t+\varepsilon t_{\mathbf {f}}^{*} (x,v)) } \\&\qquad \times \, \partial _{t} f(t+ \varepsilon t_{\mathbf {f}}^{*} (x,v), x_{\mathbf {f}}^{*} (x,v), v_{\mathbf {f}}^{*}(x,v)) \\&\qquad +\, [ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] f(s, x_{ \mathbf {f}}^{*} (x,v), v_{\mathbf {f}}^{*} (x,v)) |_{s= t + \varepsilon t_{\mathbf {f} }^{*} (x,v)}. \end{aligned}$$

The underbraced terms vanish because \([ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t- \varepsilon t_{ \mathbf {b}}^{*} (x.v)) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon t_{\mathbf {b}}^{*} (X(s;0,x,v), V(s;0,x,v) )) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon s ) = - \varepsilon \), and \([ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} ] (t+ \varepsilon t_{\mathbf {f }}^{*} (x.v)) = \frac{d}{ds} \Big |_{s=0} (t+ \varepsilon t_{\mathbf {f}}^{*} (X(s;0,x,v), V(s;0,x,v) )) = \frac{d}{ds} \Big |_{s=0} (t- \varepsilon s + \varepsilon t_{ \mathbf {f}}^{*} (x,v)) = - \varepsilon \). Moreover, in the sense of distributions on \([\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }] \times \mathbb {R}^{3} \),

$$\begin{aligned}&v\cdot \nabla _{x} f_{E} + \varepsilon ^{2} \Phi \cdot \nabla _{v} f_{E} \nonumber \\&\quad = \ \frac{1}{{\tilde{C}} \delta ^{4}}v \cdot \nabla _{x} \xi (x) \chi ^{\prime } \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v) ) \chi (t_{ \mathbf {b}}^{*} (x,v))\mathbf {1}_{x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad +\, f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v) ) \chi (t_{ \mathbf {f}}^{*} (x,v)) \mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } \Big ] \nonumber \\&\qquad +\, f_{\delta }(x_{\mathbf {b}}^{*} (x,v), v_{\mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime } (t_{\mathbf {b} }^{*}(x,v))\mathbf {1}_{x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad -\, f_{\delta }(x_{\mathbf {f}}^{*} (x,v), v_{\mathbf {f}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime } (t_{\mathbf {f} }^{*}(x,v))\mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega }. \end{aligned}$$
(A.1.9)

For \(\phi \in C_{c}^{\infty }( [\Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{ \Omega }] \times \mathbb {R}^{3} )\), we choose small \(t>0\) such that \(X(s; 0, x,v) \in \Omega _{{\tilde{C}} \delta ^{4}}\backslash \bar{\Omega }\) for all \(|s| \le t\) and all \((x,v) \in \text {supp}(\phi )\). Then, from (A.1.4), for \((X(s),V(s))= (X(s;0,x,v), V(s;0,x,v))\),

$$\begin{aligned}&\frac{d}{ds}f_{E}(X(s), V(s)) \\&\quad = \frac{d}{ds} \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(X(s),V(s)), v_{\mathbf { b}}^{*} (X(s),V(s)) ) \chi (t_{\mathbf {b}}^{*} (X(s),V(s))) \mathbf {1}_{x_{ \mathbf {b}}^{*} (X(s),V(s)) \in \partial \Omega } \\&\qquad +\, f_{\delta }( x_{\mathbf {f}}^{*} (X(s),V(s)), v_{\mathbf {f}}^{*} (X(s),V(s)) ) \chi (t_{\mathbf {f}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {f} }^{*} (X(s),V(s)) \in \partial \Omega } \Big ] \\&\qquad \times \, \chi \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ) \\&\qquad +\, \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(X(s),V(s)), v_{\mathbf {b}}^{*} (X(s),V(s)) ) \chi (t_{\mathbf {b}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {b} }^{*} (X(s),V(s)) \in \partial \Omega } \\&\qquad +\, f_{\delta }( x_{\mathbf {f}}^{*} (X(s),V(s)), v_{\mathbf {f}}^{*} (X(s),V(s)) ) \chi (t_{\mathbf {f}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {f} }^{*} (X(s),V(s)) \in \partial \Omega } \Big ] \\&\qquad \times \, \frac{d}{ds}\chi \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ). \end{aligned}$$

From \((x_{\mathbf {b}}^{*}(X(s;0,x,v),V(s;0,x,v)), v_{\mathbf {b} }^{*}(X(s;0,x,v),V(s;0,x,v)))= (x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v))\) and \((x_{\mathbf {f}}^{*}(X(s;0,x,v),V(s;0,x,v)), v_{\mathbf {f} }^{*}(X(s;0,x,v),V(s;0,x,v)))= (x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f} }^{*}(x,v))\) and \(t_{\mathbf {f}}^{*}(X(s;0,x,v),V(s;0,x,v) )=t_{\mathbf {f}}^{*}(x,v ) -s\) and \(t_{\mathbf {b}}^{*}(X(s;0,x,v),V(s;0,x,v) )=t_{\mathbf {b}}^{*}(x,v )+s\),

$$\begin{aligned}&\frac{d}{ds}f_{E}(X(s), V(s)) \nonumber \\&\quad =\Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v) ) \chi ^{\prime }( t_{\mathbf {b}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {b} }^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad - f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v) ) \chi ^{\prime }( t_{\mathbf {f}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {f} }^{*}(x,v) \in \partial \Omega } \Big ] \chi \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ) \nonumber \\&\qquad +\, \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v) ) \chi (t_{\mathbf {b}}^{*}(X(s),V(s)) ) \mathbf {1}_{x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega } \nonumber \\&\qquad +\, f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v) ) \chi (t_{\mathbf {f}}^{*}(X(s),V(s)) )\mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } \Big ]\nonumber \\&\qquad \times \,\frac{1}{{\tilde{C}} \delta ^{4}}V(s ) \cdot \nabla _{x} \xi (X(s )) \chi ^{\prime } \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ). \end{aligned}$$
(A.1.10)

By the change of variables \((x,v) \mapsto (X(s; 0, x,v), V(s;0,x,v))\), for sufficiently small s,

$$\begin{aligned}&-\iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} (x,v) \{ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \}\phi (x,v) \mathrm {d} x \mathrm {d} v \nonumber \\&\quad =- \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} (X(s), V(s)) \{ V(s)\cdot \nabla _{X} + \varepsilon ^{2} \Phi \cdot \nabla _{V} \} \phi (X(s), V(s)) \mathrm {d} x \mathrm {d} v \nonumber \\&\quad = - \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} (X(s), V(s)) \frac{d}{ds} \phi (X(s), V(s)) \mathrm {d} x \mathrm {d} v. \end{aligned}$$
(A.1.11)

Since the change of variables \((x,v) \mapsto (X(s; 0, x,v), V(s;0,x,v))\) has unit Jacobian, it follows that, for s sufficiently small,

$$\begin{aligned} \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} ((X(s), V(s)) \phi (X(s), V(s)))=\iint _{[\Omega _{ {\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} (x,v) \phi (x,v), \end{aligned}$$

and hence

$$\begin{aligned} \frac{d}{ds} \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } f_{E} ((X(s), V(s)) \phi (X(s), V(s)) =0. \end{aligned}$$

Therefore we can move the s-derivative on \(f_E\): By (A.1.10),

$$\begin{aligned}&(A.1.11) \\&\quad = \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } \frac{d}{ds} f_{E} (X(s), V(s)) \phi (X(s), V(s)) \mathrm {d} x \mathrm {d} v \\&\quad = \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v) ) \chi ^{\prime }( t_{\mathbf {b}}^{*} (X(s),V(s))) \mathbf {1}_{x_{ \mathbf {b}}^{*}(x,v) \in \partial \Omega } \\&\qquad - f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v) ) \chi ^{\prime }( t_{\mathbf {f}}^{*} (X(s),V(s))) \mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } \Big ] \\&\qquad \times \,\chi \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ) \phi (X(s ), V(s )) \\&\qquad + \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v) ) \chi (t_{\mathbf {b}}^{*}(X(s),V(s)) ) \mathbf {1}_{x_{\mathbf {b} }^{*}(x,v) \in \partial \Omega } \\&\qquad +\, f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v) ) \chi (t_{ \mathbf {f}}^{*}(X(s),V(s)) )\mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } \Big ] \\&\qquad \times \,\frac{1}{{\tilde{C}} \delta ^{4}}V(s ) \cdot \nabla _{x} \xi (X(s ))\chi ^{\prime } \big ( \frac{\xi (X(s ))}{{\tilde{C}} \delta ^{4}} \big ) \phi (X(s ), V(s )). \end{aligned}$$

From the change of variable \((X(s;0,x,v), V(s;0,x,v)) \mapsto (x,v)\),

$$\begin{aligned} (A.1.11)= & {} \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } \big [ f_{\delta }(x_{\mathbf {b}}^{*} (x,v), v_{ \mathbf {b}}^{*}(x,v)) \chi ^{\prime } (t_{\mathbf {b}}^{*}(x,v)) \mathbf {1}_{x_{ \mathbf {b}}^{*}(x,v) \in \partial \Omega } \\&- f_{\delta }(x_{\mathbf {f}}^{*} (x,v), v_{\mathbf {f}}^{*}(x,v)) \chi ^{\prime } (t_{\mathbf {f}}^{*}(x,v)) \mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } \big ] \chi \big (\frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \phi (x,v) \\&+\, \iint _{[\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }] \times \mathbb {R}^{3} } \Big [ f_{\delta }( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v) ) \chi (t_{\mathbf {b}}^{*}(x,v) ) \mathbf {1}_{x_{\mathbf {b} }^{*}(x,v) \in \partial \Omega } \\&+ f_{\delta }( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f} }^{*}(x,v) ) \chi (t_{\mathbf {f}}^{*}(x,v) )\mathbf {1}_{x_{\mathbf {f} }^{*}(x,v) \in \partial \Omega } \Big ]\\&\times \frac{1}{{\tilde{C}} \delta ^{4}}v \cdot \nabla _{x} \xi (x) \chi ^{\prime } \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big )\phi (x,v). \end{aligned}$$

Hence (A.1.8) is proved.

On the other hand, following the bounds of (A.1.6) and (A.1.7) in Step 4 we prove the third line of (3.20).

Step 6. We define \({\bar{f}}(t,x,v)\) for \((t,x,v) \in \mathbb {R} \times \mathbb {R}^{3} \times \mathbb {R}^{3}\):

$$\begin{aligned} \begin{aligned} {\bar{f}}(t,x,v)&\ : = \ f_{\delta }(t,x,v) \mathbf {1}_{(x,v) \in \bar{\Omega } \times \mathbb {R}^{3}} + f_{E}(t,x,v) \mathbf {1}_{(x,v) \in [\mathbb {R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}}. \end{aligned} \end{aligned}$$
(A.1.12)

For \(\phi \in C^{\infty }_{c}(\mathbb {R} \times \mathbb {R}^{3} \times \mathbb { R}^{3})\), by Lemma 3.3,

$$\begin{aligned}&- \int _{- \infty }^{\infty } \mathrm {d} t \iint _{\mathbb {R}^{3} \times \mathbb {R}^{3}} {\bar{f}}(t,x,v) \{\varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \} \phi (t,x,v) \mathrm {d} x \mathrm {d} v \\&\quad =- \int _{- \infty }^{\infty } \mathrm {d} t\iint _{\Omega \times \mathbb {R} ^{3}} f_{\delta }(t,x,v) \{ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \} \phi (t,x,v) \mathrm {d} x \mathrm {d} v \\&\qquad - \int _{- \infty }^{\infty } \mathrm {d} t \iint _{ [\mathbb {R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}} f_{E}(t,x,v) \{\varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \} \phi (t,x,v) \mathrm {d} x\mathrm {d} v \\&\quad = \int _{- \infty }^{\infty } \mathrm {d} t \int _{\gamma } f_{\delta } (t,x,v) \phi (t,x,v) \{n(x) \cdot v\} \mathrm {d} S_{x} \mathrm {d} v \\&\qquad + \int _{- \infty }^{\infty } \mathrm {d} t \int _{\gamma } f_{E}(t,x,v) \phi (t,x,v) \{-n(x) \cdot v\} \mathrm {d} S_{x} \mathrm {d} v \\&\qquad + \int _{- \infty }^{\infty } \mathrm {d} t \iint _{\Omega \times \mathbb {R} ^{3}} \{\varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \} f_{\delta }(t,x,v) \phi (t,x,v) \mathrm {d} x \mathrm {d} v \\&\qquad + \int _{- \infty }^{\infty } \mathrm {d} t \iint _{ [\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }]\times \mathbb {R}^{3}} \{ \varepsilon \partial _{t} + v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \} {f} _{E}(x,v) \phi (x,v) \mathrm {d} x \mathrm {d} v, \end{aligned}$$

where the contributions of \(\{t= \infty \}\) and \(\{t= -\infty \}\) vanish since \(\phi (t) \in C_{c}^{\infty } (\mathbb {R})\).

From (A.1.5), the boundary contributions are cancelled:

$$\begin{aligned} \int _{- \infty }^{\infty } \int _{\gamma } f_{\delta } (t,x,v) \phi (t,x,v) \mathrm {d} \gamma \mathrm {d} t - \int _{- \infty }^{\infty } \int _{\gamma } f_{E}(t,x,v) \phi (t,x,v) \mathrm {d} \gamma \mathrm {d} t =0. \end{aligned}$$

Further from (A.1.1) and (A.1.8), we prove that \({\bar{f}}\) solves (3.13) in the sense of distributions on \(\mathbb {R} \times \mathbb {R}^{3} \times \mathbb {R}^{3}\). \(\square \)

Compactness of \(K\mathcal {L}^{-1}\)

Proof of Lemma 2.11

From Proposition 2.10, \(\mathcal {L}^{-1}\) maps \(L^{2}\) to \(L^{2}\) so that \(\sup _{n} \Vert f^{n}\Vert _{L^{2}} < +\infty \).

Step 1. We approximate K by a compactly supported smooth \(K_{N}\).

For any \(N\gg 1\), by the Hölder inequality,

$$\begin{aligned}&\Vert K(\mathbf {1}_{\{|u|> N \text { or } |v|>N \text { or } |v-u|< \frac{1}{N} \}} f) \Vert _{2} \\&\quad = \Big \Vert \int _{\mathbb {R}^{3}} \mathbf {k}(v,u) \mathbf {1}_{\{|u|>N \text { or } |v|> {N} \text { or } |v-u|< \frac{1}{N} \}} f(u) \mathrm {d} u \Big \Vert _{2}\\&\quad \le \sup _{v} \sqrt{\int _{|u|>N} | \mathbf {k}(v,u)| \mathrm {d} u } \times \sup _{u} \sqrt{\int _{\mathbb {R}^{3}} | \mathbf {k}(v,u)| \mathrm {d} v }\times \Vert f \Vert _{2} \\&\qquad +\sup _{v} \sqrt{\int _{\mathbb {R}^{3}} |\mathbf {k}(v,u)| \mathrm {d} u } \times \sup _{u} \sqrt{\int _{|v|>N}| \mathbf {k}(v,u)| \mathrm {d} v } \times \Vert f \Vert _{2} \\&\qquad + \sup _{v} \sqrt{\int _{\mathbb {R}^{3}} |\mathbf {k}(v,u)| \mathrm {d} u } \times \sup _{u} \sqrt{\int _{\mathbb {R}^{3}} \frac{e^{-\theta |v-u|^{2}}}{ |v-u|} \mathbf {1}_{|v-u| < \frac{1}{N}} \mathrm {d} v}\\&\qquad \times \, \Vert f\Vert _{2} \ \lesssim \ o(1) \Vert f\Vert _{2}, \end{aligned}$$

where we have used the fact \(\int _{\mathbb {R}^{3}} \mathbf {k}(v,u) \mathrm {d} u \lesssim 1, \int _{\mathbb {R}^{3}} \mathbf {k}(v,u) \mathrm {d} v \lesssim 1 \), and \(\int _{\mathbb {R}^3}\frac{e^{-\beta |v|^{2}}}{|v|} \mathrm {1}_{|v| < \frac{1}{N}}=o(1)\).

Note that

$$\begin{aligned} \mathbf {k}(v,u) = \mathbf {k}_{1} (v,u) - \mathbf {k}_{2} (v,u), \ \ \ \text { with} \ \ \ \mathbf {k}_{1}, \mathbf {k}_{2} >0, \end{aligned}$$

and therefore \( \mathbf {k}_{i}(v,u) \mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \ge \frac{1}{N}\}}> \delta \) for \(0< \delta \ll 1\).

We now define \(K_{N} f:= \int \mathbf {k}_{N} f\) with

$$ \begin{aligned}&\mathbf {k}_{N}(v,u) = \ \mathbf {k}_{1,N} (v,u) - \mathbf {k}_{2,N} (v,u) \nonumber \\&\quad := \ \mathbf {k}_{1}(v,u)\mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \ge \frac{1}{N}\}} * \phi _{ \frac{1}{N}}(v)\phi _{ \frac{1}{N}}(u) \nonumber \\&\qquad -\,\mathbf {k}_{2}(v,u)\mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \ge \frac{1}{N}\}} * \phi _{ \frac{1}{N}}(v)\phi _{ \frac{1}{N}}(u) \nonumber \\&\quad = \ \int _{\mathbb {R}^{3}} \mathrm {d} u^{\prime } \phi _{ \frac{1}{N}}(u- u^{\prime })\int _{\mathbb {R}^{3}} \mathrm {d} v^{\prime } \phi _{ \frac{1}{N} }(v-v^{\prime }) \mathbf {k}_{1}(v,u)\mathbf {1}_{\left\{ |u|\le N \ \& \ |v|\le N \ \& \ |v-u| \le \frac{1}{N}\right\} } \nonumber \\&\qquad - \int _{\mathbb {R}^{3}} \mathrm {d} u^{\prime } \phi _{ \frac{1}{N}}(u- u^{\prime })\int _{\mathbb {R}^{3}} \mathrm {d} v^{\prime } \phi _{ \frac{1}{N} }(v-v^{\prime }) \mathbf {k}_{2}(v,u)\mathbf {1}_{\left\{ |u|\le N \ \& \ |v|\le N \ \& \ |v-u| \le \frac{1}{N}\right\} },\nonumber \\ \end{aligned}$$
(A.2.1)

where \(\phi _{ \frac{1}{N}}\) is the standard mollifiers. In particular, for \( i=1,2\),

$$ \begin{aligned}&\sup _{v}\int _{\mathbb {R}^{3}} \big | \mathbf {k}_{i,N}(v,u) - \mathbf {k}_{i} (v,u) \mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \le \frac{1}{N} \}} \big | \mathrm {d} u =o(1), \\&\sup _{u}\int _{\mathbb {R}^{3}} \big | \mathbf {k}_{i,N}(v,u) - \mathbf {k}_{i} (v,u) \mathbf {1}_{\{|u|\le N \ \& \ |v|\le N \ \& \ |v-u| \le \frac{1}{N} \}} \big | \mathrm {d} v =o(1). \end{aligned}$$

Consequently, \(\Vert K_{N } f- K f\Vert _{2} \lesssim o(1) \Vert f\Vert _{2}\).

We denote

$$\begin{aligned} \bar{\mathbf {k}}_{N} (v,u) := \mathbf {k}_{1,N} (v,u) + \mathbf {k}_{2,N} (v,u), \ \ \ {\bar{K}}_{N} f (v) : = \int _{\mathbb {R}^{3}} \bar{\mathbf {k}} _{N} (v,u) f(u) \mathrm {d} u. \end{aligned}$$

Note that \(\mathbf {k}_{1,N}, \mathbf {k}_{2,N} \ge 0\) and hence \(\bar{ \mathbf {k}}_{N} \ge 0\) and \(\bar{\mathbf {k}}_{N} \ge | \mathbf {k}_{N}|\).

Step 2.

We fix \(\delta \ll 1\). Given \(f^n\), we define \(f_{\delta }^{n}\) as

$$\begin{aligned} f^n_{\delta }(x,v) : = \Big [1-\chi \big (\frac{n(x) \cdot v}{\delta }\big ) \chi \big (\frac{ \xi (x)}{\delta }\big ) \Big ] \chi (\delta |v|) f^(x,v), \end{aligned}$$
(A.2.2)

and extend it to the whole space \(\mathbb {R}^{3} \times \mathbb {R}^{3}\). We follow the process in the proof of Lemma 3.6 and we only pinpoint the difference.

Similarly to Step 3 of the proof of Lemma 3.6, we define \(f_{E}^{n}(x,v)\) for \((x,v) \in [\mathbb {R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}\)

$$\begin{aligned}&f_{E}^{n}(x,v) \nonumber \\&\quad := \ e^{- \lambda t_{\mathbf {b}}^{*} (x,v) + \int ^{- t_{\mathbf {b} }^{*}(x,v)}_{0} \big [\frac{ {\nu }(X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \nonumber \\&\qquad \times f_{\delta }^{n}(x_{ \mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{ {\tilde{C}} \delta ^{4}} \big ) \chi ( t_{\mathbf {b}}^{*} (x,v) ) \ \ \ \ \text { for} \ \ x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega , \nonumber \\&\quad := \ e^{ \lambda t_{\mathbf {f}}^{*} (x,v) + \int ^{ t_{\mathbf {f} }^{*}(x,v)}_{0} \big [\frac{ {\nu }(X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \nonumber \\&\qquad \times \, f_{\delta }^{n}(x_{ \mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v)) \chi \big ( \frac{\xi (x)}{ {\tilde{C}} \delta ^{4}} \big ) \chi ( t_{\mathbf {f}}^{*} (x,v) ) \ \ \ \ \text { for} \ \ x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega , \nonumber \\&\quad := 0\quad \text {for} \quad x_{\mathbf {b}}^{*}(x,v) \notin \partial \Omega \ \text {and} \ x_{\mathbf {f}}^{*}(x,v) \notin \partial \Omega , \end{aligned}$$
(A.2.3)

where \((X(\tau ), V(\tau )) = (X(\tau ; 0,x,v), V(\tau ;0,x,v))\).

Then

$$\begin{aligned} f^n_{E}(x,v) = f^n_{\delta } (x,v) \ \ \ \text {for all } x \in \partial \Omega , \end{aligned}$$
(A.2.4)

because, if \(x \in \partial \Omega \) and \(n(x) \cdot v>\delta \), then \(t_{ \mathbf {b}}^{*}(x,v)=0\). If \(x \in \partial \Omega \) and \(n(x) \cdot v<\delta \) then \(t_{\mathbf {f}}^{*}(x,v)=0\).

We define \({\bar{f}}^{n}(x,v)\) as

$$\begin{aligned} \begin{aligned} {\bar{f}}(x,v)&\ : = \ f_{\delta }(x,v) \mathbf {1}_{(x,v) \in \bar{\Omega } \times \mathbb {R}^{3}} + f_{E}(x,v) \mathbf {1}_{(x,v) \in [\mathbb {R}^{3} \backslash \bar{\Omega }] \times \mathbb {R}^{3}}. \end{aligned} \end{aligned}$$
(A.2.5)

Note that \({\bar{f}}^{n}\) solves

$$\begin{aligned} \lambda {\bar{f}}^{n} + v\cdot \nabla _{x} {\bar{f}} ^{n} + \frac{1}{\varepsilon } \nu \bar{ f} ^{n} +\varepsilon ^{2} \Phi \cdot \nabla _{v} {\bar{f}}^{n} - \frac{1}{2}\varepsilon ^{2} \Phi \cdot v {\bar{f}}^{n} \ = \ h^{n} \ = \ h_{1}^{n}+ h_{2}^{n} + h_{3}^{n} + h_{4}^{n}, \end{aligned}$$

where

$$\begin{aligned}&h_{1}^{n} (x,v)= \mathbf {1}_{(x,v) \in \Omega \times \mathbb {R}^{3}} \left[ 1-\chi \left( \frac{n(x) \cdot v}{\delta }\right) \chi \left( \frac{\xi (x)}{\delta }\right) \chi \left( \frac{ \xi (x)}{\delta }\right) \right] \chi (\delta |v|) g^{n}, \\&h_{2}^{n} (x,v) = \mathbf {1}_{(x,v) \in \Omega \times \mathbb {R}^{3}} f^{n} \left\{ v\cdot \nabla _{x} + \varepsilon ^{2} \Phi \cdot \nabla _{v} \right\} \\&\quad \times \Big ( \big [1-\chi \big ( \frac{n(x) \cdot v}{\delta }\big ) \chi \big ( \frac{\xi (x)}{\delta }\big ) \big ] \chi \big (\frac{ \xi (x)}{\delta }\big ) \chi (\delta |v|)\Big ), \\&h_{3}^{n} (x,v) = \mathbf {1}_{{\ (x,v) \in [\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }]\times \mathbb {R}^{3}}} \ \frac{1}{{\tilde{C}} \delta ^{4}}v \cdot \nabla _{x} \xi (x) \chi ^{\prime } \big ( \frac{\xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \nonumber \\&\quad \times \Big [ f_{\delta }^{n}( x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b} }^{*}(x,v) ) e^{- \lambda t_{\mathbf {b}}^{*} (x,v) + \int ^{- t_{\mathbf {b} }^{*}(x,v)}_{0} \big [\frac{ {\nu }(X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \mathbf {1}_{x_{ \mathbf {b}}^{*}(x,v) \in \partial \Omega } \\&\quad +\, f_{\delta }^{n}( x_{\mathbf {f}}^{*}(x,v), v_{\mathbf {f}}^{*}(x,v) ) \mathbf {1}_{x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega } e^{ \lambda t_{ \mathbf {f}}^{*} (x,v) + \int ^{ t_{\mathbf {f}}^{*}(x,v)}_{0} \big [\frac{ {\nu } (X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \Big ], \\&h_{4}^{n} (x,v) = \mathbf {1}_{{\ (x,v) \in [\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{\Omega }]\times \mathbb {R}^{3}}} f^{n}_{\delta }(x_{\mathbf {b}}^{*}(x,v), v_{\mathbf {b}}^{*}(x,v)) \\&\quad \times e^{- \lambda t_{\mathbf {b}}^{*} (x,v) + \int ^{- t_{\mathbf {b} }^{*}(x,v)}_{0} \big [\frac{ {\nu }(X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \chi \big ( \frac{ \xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime }(t_{\mathbf {b}}^{*}(x,v)) \mathbf {1}_{ x_{\mathbf {b}}^{*}(x,v) \in \partial \Omega } \\&\quad +\, \mathbf {1}_{{\ (x,v) \in [\Omega _{{\tilde{C}} \delta ^{4}} \backslash \bar{ \Omega }]\times \mathbb {R}^{3}}} f^{n}_{\delta }(x_{\mathbf {f}}^{*}(x,v), v_{ \mathbf {f}}^{*}(x,v)) \\&\quad \times e^{ \lambda t_{\mathbf {f}}^{*} (x,v) + \int ^{ t_{\mathbf {f} }^{*}(x,v)}_{0} \big [\frac{ {\nu }(X(\tau ),V(\tau ))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau )) \cdot V(\tau ) \big ] \mathrm {d} \tau } \chi \big ( \frac{ \xi (x)}{{\tilde{C}} \delta ^{4}} \big ) \chi ^{\prime }(t_{\mathbf {f}}^{*}(x,v)) \mathbf {1}_{ x_{\mathbf {f}}^{*}(x,v) \in \partial \Omega }, \end{aligned}$$

and

$$\begin{aligned}&\Vert h_{1}^{n} \Vert _{L^{2}(\mathbb {R}^{3} \times \mathbb {R}^{3})} \ \lesssim \ \Vert g^{n}\Vert _{L^{2}(\Omega \times \mathbb {R}^{3})}, \ \ \Vert h_{2}^{n} \Vert _{L^{2} (\mathbb {R}^{3} \times \mathbb {R}^{3})} \ \lesssim _{\delta } \ \Vert f^{n} \Vert _{L^{2}(\Omega \times \mathbb {R}^{3})}, \\&\Vert h_{3}^{n} \Vert _{L^{2} (\mathbb {R}^{3} \times \mathbb {R}^{3})} +\Vert h_{4}^{n} \Vert _{L^{2} (\mathbb {R}^{3} \times \mathbb {R}^{3})} \ \lesssim _{\delta } \ \Vert f_{\delta }^{n} \Vert _{L^{2} (\gamma )}. \end{aligned}$$

Step 3. For \((x,v) \in \text {supp}({\bar{f}})\), we can choose a fixed \(T>0\) such that

$$\begin{aligned} X(T; 0,x,v) \notin \text {supp}({\bar{f}} ) \ \ \text {and} \ \ X(T; 0,x,v) \notin \text {supp}(h), \end{aligned}$$
(A.2.6)

so that

$$\begin{aligned} {\bar{f}} (X(T;0,x,v), V( T;0,x,v))=0. \end{aligned}$$

Directly,

$$\begin{aligned} | X( T;0,x,v) -x| = | v T+ O(\varepsilon ^{2}) \Vert \Phi \Vert _{\infty }T^{2}| \ge \delta T- O(\varepsilon ^{2}) \Vert \Phi \Vert _{\infty }T^{2}. \end{aligned}$$

We choose \(T= \frac{C}{\delta }\) for large but fixed \(C\gg 1\) such that \(| X( T;0,x,v) -x|\ge C - O(\frac{\varepsilon ^{2}}{\delta ^{2}}) \ge \frac{C}{2} \gg 1\). This proves our claim (A.2.6).

With this choice T,

$$\begin{aligned} {\bar{f}}^{n}(x,v)= & {} - \int ^{T}_{0} h^{n}(X(s;0,x,v), V(s;0,x,v))\\&\quad e^{\lambda s + \int ^{s}_{0} \big [\frac{\nu ( V(\tau ;0,x,v))}{\varepsilon } - \frac{1}{2} \varepsilon ^{2} \Phi (X(\tau ;0,x,v) ) \big ] \mathrm {d} \tau } \mathrm {d} s. \end{aligned}$$

By the averaging lemma [23], for any given v,

$$\begin{aligned} \int \mathbf {k}_{N}(v,u){\bar{f}}^{n}(x,u) \mathrm {d} u\in H^{1/4}(\mathbb {R} ^{3}). \end{aligned}$$

Since \({\bar{f}}^{n}\)’s support is bounded uniformly, by a diaganolization argument, it follows that there exists a weak limit \({\bar{f}}\in L^{2}\) of \( {\bar{f}}^{n}\) such that for any rational point v

$$\begin{aligned} \int \mathbf {k}_{N}(v,u){\bar{f}}^{n}(x,u)\mathrm {d} u\rightarrow \int \mathbf { k}_{N}(v,u){\bar{f}}(x,u) \mathrm {d} u \ \ \ \text {strongly in} \ L_{x}^{2}. \end{aligned}$$
(A.2.7)

Since \(\mathbf {k}_{N}(v,u)\) is smooth in v with compact support, we deduce (A.2.7) for all \(v \in \mathbb {R}^{3}.\)

Step 4. Finally,

$$\begin{aligned} K f^{n}= & {} K_{N} f^{n} + (Kf^{n}-K_{N}f^{n}) = {K_{N} f^{n}_{\delta }} \ + \ {\ K_{N}( f^{n}- f^{n}_{\delta }) + (Kf^{n}-K_{N}f^{n})}. \end{aligned}$$

From Step 3,

$$\begin{aligned} K_{N} {f}^{n}_{\delta } = K_{N} {\bar{f}}^{n}|_{\Omega } \rightarrow K_{N} \bar{f }|_{\Omega } \ \ \ \text {strongly in } L^{2}. \end{aligned}$$

Note that

$$\begin{aligned} 1-\Big [1-\chi \big (\frac{n(x) \cdot v}{\delta }\big ) \chi \big (\frac{ \xi (x )}{\delta }\big ) \Big ] \chi (\delta |v|) \le \mathbf {1}_{|v| \ge \frac{1}{\delta }} + \mathbf {1 }_{|v| \le \frac{1}{\delta }, \text {dist} (x, \partial \Omega )< \frac{\delta }{2}, |n(x) \cdot v|< \delta }. \end{aligned}$$
(A.2.8)

Hence, from (A.2.1),

$$\begin{aligned} \Vert K_{N} ( f^{n} - f^{n}_{\delta })\Vert _{L^{2}_{x,v}}\lesssim & {} \Vert f^{n} -f^{n}_{\delta }\Vert _{L^{2}_{x,v}} \lesssim \big \Vert \chi _{\delta }^{c} \big \Vert _{\infty } \Vert f^{n}\Vert _{L^{2}_{x,v}} \lesssim O(\delta ), \\ \Vert Kf^{n} - K_{N} f^{n} \Vert _{L^{2}_{x,v}}\lesssim & {} o(1) \Vert f^{n} \Vert _{L^{2}_{x,v}} \lesssim o(1). \end{aligned}$$

We conclude the proof by choosing \(\delta \ll 1, \ 1 \ll N \) then letting \( n\rightarrow \infty \). \(\square \)

Appendix B: List of symbols

\(\Vert \cdot \Vert _p\)

the \(L^p(\bar{\Omega }\times \mathbb {R}^3)\) norm

 

\(\Vert \cdot \Vert _{L^{p}}\)

the \(L^p(\bar{\Omega } ) \) norm

 

\(\Vert \cdot \Vert _{L^{p}_y}\)

the \(L^p( \{ y \in Y\} ) \) norm

 

\(( \, \cdot \,,\, \cdot \, )\)

\(L^2(\bar{\Omega }\times \mathbb {R}^3)\) inner product or \(L^2( \mathbb {R}^3)\) inner product

 

\(\bar{\Omega }\)

\(\Omega \cup \partial \Omega \)

 

\(\Vert \cdot \Vert _{\nu }\)

\(\Vert \nu ^{1/2}\cdot \Vert _2\)

 

\(W^{k,p}\)

Sobolev space

 

\(H^k\)

a Sobolev space \(W^{k,p}\) with \(p=2\)

 

\(\Vert \cdot \Vert _{L^{p}L^{q}}\)

a norm of \( \Vert \cdot \Vert _{L^{p}(L^{q})} \) which equals \( \big \Vert \Vert \cdot \Vert _{L^{q}} \big \Vert _{L^{p}}\)

 

\(\mathrm {d} \gamma \)

\(|n(x)\cdot v|\mathrm {d} S(x)\mathrm {d} v\) with \(\mathrm {d} S(x)\) the surface measure of \(\partial \Omega \)

 

\(L^p(\partial \Omega \times \mathbb {R}^3)\)

\(L^p\)-norm on \(\partial \Omega \times \mathbb {R}^3\) with a measure \(\mathrm {d}\gamma \)

 

\(|f|_p^p\)

\(\int _{\gamma } |f(x,v)|^p \mathrm {d}\gamma \) or \(\int _{\partial \Omega } |f(x)|^p \mathrm {d} S(x)\)

 

\(f_\gamma , f_\pm \)

a trace of f on \(\gamma \), a trace of f on \(\gamma _\pm \)

 

\(|f|_{p,\pm }\)

\(|f \mathbf {1}_{\gamma _{\pm }}|_p\)

 

\(X \lesssim _\alpha Y\)

\(X \le C_\alpha Y\) where \(C_\alpha \) only depends a parameter \(\alpha \)

 

\(X \ll _{a} Y\)

\(X\le C_{a} Y\) where \(C_{a}>0\) is sufficiently small

 

\(0+\)

Some positive number \(\delta >0\) without specifying the size

 

\(\vec {G}\)

A force field

(1.1)

\(\Phi \)

A force field

(1.9)

\(M_w\)

A wall Maxwellian

(1.3)

\(\mathcal {P}^w_\gamma \)

The diffuse reflection boundary operator

(1.5)

\(\mu \)

The global Maxwellian

(1.8)

\(T_w\)

A wall temperature

(1.9)

\(\vartheta _w\)

An \(\varepsilon \)-order variation of the wall temperature around 1

(1.9)

\(\Theta _w\)

An extension of \(\vartheta _w\) in \(\Omega \)

(1.10)

\(\rho _w\)

A function defined in (1.11)

(1.11)

\(f_w\)

A correction term at the boundary

(1.11)

\(\mathbf {P}\)

A \(L^2_v\)-projection on the null space of L

 

abc

Coefficients of \(\mathbf {P}\)

(1.19)

\(\mathbf {I} -\mathbf {P}\)

\((\mathbf {I} -\mathbf {P}) f := f -\mathbf {P}f\)

 

\(\mathfrak {M}\)

Mach number

 

\(\varphi _\varepsilon \)

A correction on the boundary

(1.22)

r

\(\mu ^{-1/2} \mathcal {P}^w_\gamma \big (\sqrt{\mu }\varphi _{\varepsilon } \big )-\varphi _{\varepsilon }\)

(1.25)

\(P_\gamma f \)

\(\sqrt{2\pi }\sqrt{\mu (v)} \int _{n(x)\cdot u>0} f(u) \sqrt{ \mu (u)} \{n(x) \cdot u\} \mathrm {d} u\)

(1.26)

\(\mathcal {Q}\)

\(\varepsilon ^{-1}\big [\mu ^{-1/2} \mathcal {P}^w_\gamma ( \sqrt{\mu } f) -{P}_\gamma f\big ]\)

(1.27)

\(f_s\)

An \(\varepsilon \)-order correction of steady solutions substracted \(f_w\)

(1.32)

\(L_1, A_s\)

Terms defined in (1.34), (1.35)

 

\(L^{-1}\)

\(L^{-1}\) is an inverse with \(\mathbf {P}L^{-1} \equiv 0\)

 

w(v)

\(e^{\beta |v|^2}\) with \(0< \beta \ll 1\)

Theorem 1.1

\(g_1, g_2\)

Defined in (1.41)

 

\({\tilde{f}}\)

An unsteady perturbation around steady solutions

(1.48)

\(L_\phi \)

\(L_\phi \psi : = - [\Gamma (\phi , \psi ) + \Gamma (\psi ,\phi )]\)

 

\(\mathcal {E}_{\lambda }[\cdot ](t)\)

An energy term in \(L^2\) energy estimate

(1.53)

\(\mathcal {D}_{\lambda }[\cdot ](t)\)

A dissipation term in \(L^2\) energy estimate

(1.54)

\(\xi \)

A function defined in (2.3)

(2.3)

n(x)

The outward normal at \(x \in \partial \Omega \)

(2.5)

\(t_{\mathbf {b}}, x_{\mathbf {b}}\)

A backward exit time, a backward exit point

(2.9)

\(t_{\mathbf {f}}, x_{\mathbf {f}}\)

A forward exit time, a forward exit point

(2.10)

\(t_i (t, \ldots , v_{i-1})\)

i-th backward exit time

Definition 2.7

\(X_\mathbf {cl}, V_\mathbf {cl}\)

A stochastic trajectory

Definition 2.7

\(\gamma ^\delta _\pm \)

Non-grazing phase boundary

(2.15)

\(\llbracket \cdot \rrbracket \)

A closing norm for the steady case

(2.20)

\(\mathbf {k}_\beta \)

A function defined in (2.26)

(2.26)

\(K_\beta \)

\(K_\beta g := \int _{\mathbb {R}^3} \mathbf {k}_\beta (v,u) g(u) \mathrm {d}u\)

 

\(\beta ^\prime \)

A number \(0< \beta ^\prime \ll \beta \)

Proposition 2.6

\(\mathcal {V}(x), \mathcal {V}_j\)

velocity sections of \(\gamma _+\)

(2.28), (2.29)

\(\mathrm {d}\sigma , \mathrm {d}\sigma _j\)

Measures defined on the velocity sections of \(\mathcal {V}(x), \mathcal {V}_j\)

(2.28)

\({\tilde{w}}\)

\(w^{-1} \mu ^{-1/2}\)

(2.35)

\(\mathrm {d}\Sigma _l\)

a stochastic measure

(2.46)

YW

Scaled trajectory for the dynamic problem

(3.2)

\({\tilde{t}}_\mathbf {b}, {\tilde{x}}_\mathbf {b}\)

Scaled backward exit time and position

(3.4)

\({\tilde{t}}_\mathbf {f}, {\tilde{x}}_\mathbf {f}\)

Scaled forward exit time and position

(3.4)

\(f_\delta \)

An interior and non-grazing parts of f

(3.11)

\(f_{la}, f_{sm}\)

Functions defined in (3.22)

 

\(\mathbf {S}_i f\)

Functions defined in (3.40) and (3.40)

 

\([[[ \cdot ]]] \)

A closing norm for the unsteady case

(3.93)

\(\overline{f_{\delta }}\)

Defined in (A.1.12)

 

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, R., Guo, Y., Kim, C. et al. Stationary Solutions to the Boltzmann Equation in the Hydrodynamic Limit. Ann. PDE 4, 1 (2018). https://doi.org/10.1007/s40818-017-0037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-017-0037-5

Keywords

Navigation